
SANDIA REPORT
SAND98-8224 • UC–405
Unlimited Release
Printed January 1998

Infrastructure for Distributed Enterprise
Simulation

M. M. Johnson, A. S. Yoshimura, M. E. Goldsby, C. L. Janssen, and D. M. Nicol

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of
Energy under Contract DE-AC04-94AL85000.

Approved for public release; distribution is unlimited.

Issued by Sandia National Laboratories, operated for the United States
Department of Energy by Sandia Corporation.
NOTICE: This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees, nor any of
their contractors, subcontractors, or their employees, makes any warranty,
express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product,
or process disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product process, or
service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring
by the United States Government, any agency thereof, or any of their
contractors or subcontractors. The views and opinions expressed herein do not
necessarily state or reflect those of the United States Government, any agency
thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Prices available from (615) 576-8401, FTS 626-8401

Available to the public from
National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Rd
Springfield, VA 22161

NTIS price codes
Printed copy: A05
Microfiche copy: A01

3

SAND98-8224
Unlimited Release

Printed January 1998

Distribution
Category UC-405

Infrastructure for Distributed Enterprise Simulation

Michael M. Johnson∗, Ann S. Yoshimura, Michael E. Goldsby, and Curtis L. Janssen
Systems Studies Department
Sandia National Laboratories
Livermore, California 94550

David M. Nicol
Department of Computer Science

Dartmouth College
Hanover, New Hampshire 03755

ABSTRACT

Traditional discrete-event simulations employ an inherently sequential algorithm and are
run on a single computer. However, the demands of many real-world problems exceed the
capabilities of sequential simulation systems. Often the capacity of a computer’s primary
memory limits the size of the models that can be handled, and in some cases parallel execution
on multiple processors could significantly reduce the simulation time.

This paper describes the development of an Infrastructure for Distributed Enterprise
Simulation (IDES)— a large-scale portable parallel simulation framework developed to support
Sandia National Laboratories’ mission in stockpile stewardship. IDES is based on the
Breathing-Time-Buckets synchronization protocol, and maps a message-based model of
distributed computing onto an object-oriented programming model. IDES is portable across
heterogeneous computing architectures, including single-processor systems, networks of
workstations and multi-processor computers with shared or distributed memory. The system
provides a simple and sufficient application programming interface that can be used by
scientists to quickly model large-scale, complex enterprise systems. In the background and
without involving the user, IDES is capable of making dynamic use of idle processing power
available throughout the enterprise network.

∗ email: mmjohns@ca.sandia.gov

4

ACKNOWLEDGEMENT

The authors acknowledge support by the Department of Energy through Sandia National
Laboratories. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed
Martin Company, for the United States Department of Energy under Contract DE-AC04-
94AL85000.

5

CONTENTS

1 Introduction .. 7
1.1 Why Parallel Simulation ... 7

2 IDES Performance Modeling .. 10
2.1 The Processor Event Horizon .. 11
2.2 A Model of Parallel Simulation .. 12

2.2.1 State Evolution Model .. 14
2.2.2 Window Execution Time .. 15
2.2.3 End of Window Calculation .. 19
2.2.4 Message Transfer ... 20
2.2.5 Overall Performance Measures ... 22

2.3 Experiments ... 23

3 The IDES System ... 30
3.1 System Design Goals ... 30
3.2 System Constraints .. 30
3.3 Synchronization ... 31
3.4 IDES Implementation .. 33

3.4.1 Class Structure ... 33
3.4.2 Decomposition Mechanism ... 34
3.4.3 Code Distribution ... 34
3.4.4 State Saving Mechanism ... 35
3.4.5 Example Simulation Problem .. 36

4 Batch Oriented Simulation .. 39
4.1 CORBA Batch System ... 40
4.2 Distributed Queuing System ... 41

5 Conclusions .. 42

References ... 43
Bibliography ... 45

Appendix A: PDES System Design Issues .. 48
A.1 An Object-Oriented Model for Parallel Programming 48
A.2 Ways of Implementing Concurrency ... 52
A.3 An Interpretation of Chandy-Sherman Space-Time Simulation 62
A.4 Parallel Conservative Simulation Timing Diagrams 67

Appendix B: Preemptive Min-Reduction Algorithm Proof .. 71
Appendix C: Complexity of Solving Model Behavior Equations 74

6

Intentionally Left Blank

7

1 INTRODUCTION

The use of parallel computers to execute discrete-event simulations has been a topic of research
interest for nearly 20 years. Until recently, parallel computers could be found only in research
labs, and application of parallel simulation technology was limited by the simple problem of lack
of access. This has changed. Shared-memory multiprocessors have become a commodity
product. Fast networks to link personal computers have become commodity products. It is now
possible to order the pieces of a tremendously powerful distributed / parallel system over the
Internet one day, receive and assemble it two days later.

But, while hardware to support large-scale simulations is readily accessible, software
(typically) lags behind. In the enterprise computing world a number of tools, languages, and
standards exist, e.g., Java and its development environments, CORBA and its implementations.
However, systems to support large-scale distributed simulations are absent.

IDES, an Infrastructure for Distributed Enterprise Simulation, is a parallel simulation
framework for complex, large-scale enterprise simulations. IDES was developed to support the
study of issues of importance to national security. Many of these issues involve the analysis of
complex systems. IDES is a policy driven simulation tool capable of performing decision directed
analysis of complex system models. The goal of such analysis is to discover the emergent
collective behavior of the system through the interaction of detailed individual submodel
simulations— the definition of enterprise simulation.

In this paper we discuss issues that arose in the development of a parallel/distributed
simulation system which was intended from the start to support a certain type of application, on a
variety of commercially available platforms. We anticipate that the lessons we learned in the
course of designing and building this system have application to other systems as well.

1.1 WHY PARALLEL SIMULATION

A great many modeling and simulation problems are either too large to run monolithically, or their
performance on a single machine would be excruciatingly slow to support meaningful studies.
Commercially available simulation systems are exclusively monolithic; while parallel systems exist
in academia, they often assume homogeneous environments, or specific application domains (e.g.
PCS networks). During the development of IDES, a number of existing simulation packages
were investigated. The purely commercially systems, including BONeS, RESQ, G2, ModSim,
and others were strictly sequential. Available research systems, including Maisie, OLPS, TWOS,
Simpack as well as others, were for the most part optimistic, unsupported, and in a few cases,
unavailable outside of academia.

Parallel simulation is beneficial in two distinct areas. First, a parallel simulation is only
advantageous to time-performance when many computationally intense activities occur
simultaneously in simulated time, allowing computational overhead to be executed in parallel in
real-time. Second, while parallelism may not improve run-time performance for all small models,
it may be necessary to support the exorbitant resource demands (virtual memory, I/O bandwidth,
etc.) of large models.

The primary goal of the IDES research was to develop an object-oriented simulation
system capable of supporting massive model, parallel discrete event simulations transparently
across heterogeneous platforms. IDES provides a simple and sufficient Application Programming

8

Interface (API) which can be used to quickly model large-scale, complex systems. Relying on a
common infrastructure, the system supports both distributed real-time simulation of Enterprise
Models (EM), and reliable execution of Batch-Oriented Simulation (BOS).

Communication Requirements
(Latency/Bandwidth)

Computational
Granularity

Communication
Overhead

Simulation
Synchronization

Overhead

Distributed
Simulation+

Batch Oriented
Simulations

Enterprise
Modeling

Figure 1.1: IDES simulation support.

From the beginning, the IDES system architecture has been structured to support two
disparate areas of simulation: (1) Batch Oriented Simulations (BOS), where legacy codes can be
bundled with input and run remotely over any number of network available machines; and (2)
real-time simulation of Enterprise Models (EM), supporting object-oriented discrete-event
simulation across networks of heterogeneous machines. The relationship between these two areas
of supported simulation is depicted in Figure 1.1.

Enterprise
Modeling

Batch Oriented
Simulations

Distributed Simulation
Viable

Communication
Requirements

Computational
Complexity

Distributed Simulation
Penalty

Autonomous
Object Groupings

Exhaust
Physical
Memory

Exhaust
Swap Space

0

1

n

Figure 1.2: Supported areas of distributed simulation: BOS and EM.

9

BOS type applications are best represented by computational codes that can be easily
divided into independent submodels, and for which the computational requirements of submodels
is high in relation to their intercommunication requirements. BOS support provides a basis for
integrating dissimilar simulation systems into a common framework. EM simulations, on the
other hand, represent the parallelization of large, monolithic models that require real-time and
continuous intercommunication between submodels. In general, EM simulations are extremely
fine grained in comparison to BOS applications. Figure 1.2 provides another illustration of the
two application areas addressed by our research. Since both of these domains of simulation
require a common infrastructure— distribution of submodels, support for both on and off machine
communication, and remote control of submodel invocation— it made sense to consider them as a
unified design challenge. Sections 2 and 3 deal with the EM simulation aspects of IDES, our
primary research focus, and section 4 details the BOS implementation.

Perhaps the most important point we wish to convey is that capability is our main
concern, not run-time performance. Of course, execution time is a consideration, but we view it
as a constraint rather than an objective function. In the enterprise computing world issues of
portability, maintainability, and conformance to standards are as important as fast run-time, so
much so that it is acceptable to sacrifice execution speed to provide these other capabilities.

10

2 IDES PERFORMANCE MODELING

There are a large number of factors that potentially affect performance of the IDES system. We
thought it prudent, prior to building IDES, to anticipate some of the performance considerations,
by first building an analytic model of IDES to study its behavior.

The model recognizes that the key elements governing a submodel’s behavior with respect
to synchronization are, (1) its time of next event, and (2) its minimum known receive time on
generated messages. A submodel’s state is described by a pair of real numbers, recording these
two elements. Stochastic assumptions are made about changes in those two elements as events
are processed. A submodel reaches its local event horizon when its time-of-next event component
dominates its receive-time component. One such model is advanced for every submodel in the
system; additional assumptions about communication delay and construction of reduction trees
model the inclusion of a preemptive min-reduction calculation. The end result of the model is a
probability distribution of the time required to execute one BTB window. Solution of the model
is computational rather than closed form.

In order to include further detail (and temporarily avoid the effort of building a
numerically stable solver), we developed a simulation of this model. Performance studies using
the simulation revealed the sensitivity of performance to the delay through a network interface
that is shared by all processors in an SMP. This result has immediate bearing on the issue of
hardware acquisition— ironically, the systems most prone to having the network interface be a
performance bottleneck are the high-end larger scale (and more costly) SMP servers. Actual
studies are needed to assess whether the advantage of local communication between submodels in
the same SMP is enjoyed. Another point of interest was that perfect load balance is difficult if
not impossible to achieve when the workload is stochastically driven. The inherent variance in the
workload behavior induces a certain level of imbalance. An important conclusion to draw from
this study is that complex load-balancing schemes are unlikely to be significantly more effective
than simple schemes— a conclusion that has obvious bearing on IDES system design. A final
lesson we learned from the simulation study was that a performance optimization we considered
with regards to handling communication was usually quite effective, and hence was included in
the IDES system.

One of the goals for IDES was portability across heterogeneous computing architectures,
including single-processor systems, networks of workstations, and multiprocessor computers with
shared or distributed memory. Given the large space of architectures across which IDES
operates, we were driven to investigate the impact of different architectural features on potential
designs, prior to actual implementation. A number of factors that could impact performance were
considered, especially those involving synchronization, communication, and load balance. In this
section we study a simple model of the synchronization strategy, and various methods that were
employed to manage synchronization and communication. The model we developed reflects the
effects of load imbalance, and as such may later form the basis of cost/benefit analysis of dynamic
load balancing strategies.

Parallel simulation of IDES models is attractive principally because of the large memory
available on distributed and parallel platforms; we anticipate massively many simulation objects,
whose events will require little computation. While speedup is of course desirable, having
sufficient memory is our biggest concern. This forces us towards a synchronization strategy that
effectively accommodates aggregation of objects. Because of the memory constraint, our original

11

goal was to avoid optimistic methods and their state-saving requirements by using the
conservative synchronization method YAWNS (Nicol 1992, 1993). We were attracted to
YAWNS by its mathematical guarantee of ample parallelism for models containing a certain type
of lookahead. However, deeper analysis of IDES model characteristics showed that some objects
lack the predictive capability required by YAWNS. The "optimistic" version of YAWNS is
Steinman's Breathing Time Buckets (BTB) protocol, used in SPEEDES (Steinman 1992).

This section reports on our work developing a model of BTB, and an algorithm for
accelerating its window computation. We are using this model to study the performance
ramifications of differing architectural configurations, of differing communication costs, and to
investigate the potential for alternative communication and synchronization schemes. While the
model is suitable for numerical solution, at this time we are using discrete-event simulation to
evaluate it.

Our work has several specific contributions. First, our model of BTB is unique in that it is
tractable, it captures on-processor aggregation of objects, and captures details of run-time
behavior that previous models did not. Second, we developed the "preemptive min-reduction"
algorithm to accelerate detection of the BTB synchronization window edge. Third, we develop
an alternative communication strategy for BTB that attempts to better utilize the communication
network. Fourth, we study the projected performance of BTB on large-scale models, across
various architectures, communication strategies, problem sizes, and load distributions. We found
that good performance may be expected on problems of the size we anticipate in IDES, that the
new communication strategy offers significant performance advantages provided that the
communication interface is not overwhelmed by the offered traffic, and (surprisingly) that
performance may be insensitive to moderate deviations from "perfect" load balancing. But, the
largest contribution of this work is that it helped us to design IDES with some hint of the
performance it would deliver and the issues that were most important in achieving good
performance.

2.1 THE PROCESSOR EVENT HORIZON

Our conceptual model of the parallel simulation is that each of P processors is responsible for the
simulation of a number of objects. While the processors may be organized in a shared-memory
machine, a networked cluster of shared-memory machines, or a distributed-memory machine, we
do assume that objects are bound together logically to be managed by a common thread of
control. As the result of an object being simulated, it may produce one or more messages for
other objects. Following customary PDES practice, each message is considered to have a "send-
time" and a "receive-time"; the send-time is the time at which the sending object generates the
message, the receive-time is the time at which that message affects the state of the recipient. A
positive difference between the two reflects tentative foreknowledge of future behavior. At any
instant t in simulation time, the event horizon H(t) is the minimum receive-time at least as large as
t, among all messages whose send-time is greater than t. The importance of this notion is that if
H(t) > t, all simulation events with time-stamps between t and H(t) may be safely processed
without further synchronization.

Each BTB window starts with all objects synchronized at a simulation time t. The event
horizon H(t) is determined by allowing each object to compute optimistically forward, internally
buffering all messages it generates, until either its own time-of-next-event is as large as its local

12

event horizon (LEH)— the minimum receive-time among all messages it has generated in this
window— or it learns that some other processor's LEH is smaller than its own simulation clock.
At this point it participates in a computation that determines H(t) as the minimum reached LEH
among all objects. With H(t) known, all messages with send-times less than H(t) are released, as
these are now known to be correct. At this step an object may receive a message with a receive-
time smaller than the time of the last event the object executed. But, since the object employed
state-saving during its execution, it is able to rollback to the time of that message. Also note that
by construction the receive time of that straggler is at least H(t), and that any message it
generated with a send-time of at least H(t) was withheld. Consequently the rollback does not
involve sending anti-messages between objects.

The event horizon is extended by defining it in terms of send and receive times of inter-
processor messages, rather than inter-object messages. As an object simulates forward it may
deliver messages to other objects resident on the same processor. With this definition, the
synchronization window is at least as large as before; if there is substantial messaging traffic
between co-resident objects the window may be much larger. As the global synchronization that
establishes the event horizon is expensive, increasing the window size serves to amortize that cost
over more events executed in that window. Anti-messages need not be used if, after H(t) is
determined, all objects on all processors are rolled back to time H(t) by means of restoring state at
time H(t). However, anti-messages can be used to fine-tune the rollbacks to bring back only
those objects that must be rolled back, and to bring them only as far back in time as the messaging
behavior warrants.

Two previous analytic efforts shed light on BTB performance, but neither attempted to
capture the behavior of the protocol in real time. The first is a stochastic study of YAWNS
(Nicol 1991, 1993), that focused on the density of events within a synchronization window. The
analysis of BTB in (Steinman 1994) used differential equations, but came to qualitatively the same
conclusion— the density of concurrently simulatable events in a window increases as the number
of objects increases, even though the window size is decreasing.

Performance modeling of parallel discrete-event simulations has proven to be a rich area,
with a number of models addressing high level aspects of different synchronization protocols, e.g.,
(Nicol 1991, Felderman & Kleinrock 1991, Ferscha 1995, Gupta et.al. 1996). Our work is unique
in this context with its focus on exploring performance on different architectures, using different
strategies for communication.

2.2 A MODEL OF A PARALLEL SIMULATION

We assume that objects are mapped to processors with a mapping that does not change within a
synchronization window. We let ni denote the number of objects assigned to processor i. Of
these, bi are boundary objects, capable of generating messages destined for objects on other
processors. The remaining xi = ni − bi objects are interior, as they communicate only with objects
assigned to their own processor. Obviously, the classification of any given object as boundary or
interior is driven by the mapping of objects to processors; it is not a classification intrinsic to the
simulation. For simplicity we assume that min{xi, bi} divides max{xi, bi} evenly.

Each processor maintains its own event list, with events associated with all objects being
placed on that list. The processor manages the event list in the usual way. We presume that the
distribution of simulation time between successive events is random, with probability density

13

function αi on processor i. The receive-time of a message is larger than its send time by a random
amount, with probability density function τi. We assume that a boundary object generates exactly
one message; it is not particularly difficult to extend this to multiple messages, in which case τi

describes the minimum time-stamp among them, but we have not pushed through all the
ramifications of such an extension. We will occasionally use the complementary cumulative
distribution functions

∫ ∫
∞ ∞

==
x x iiii dssxRdssaxA)()(and)()(τ

We assume that the simulation of boundary events is distributed evenly among simulation of
interior events: if bi < xi, then every (xi/bi + 1)th event is for a boundary object and if xi < hi every
(bi/xi + 1)th event is for an interior object. Knowledge of step number k then completely
determines whether the associated event execution is for an interior or boundary object.

We assume that execution of each event requires unit time, and that transmission of a
message between any two processors requires m units of time, m being integer. Event processing
in IDES is fine-grained relative to communication delays; hence our assumption that
communication costs are an integer multiple of event execution costs reflects this. For the ease of
exposition we assume each processor has the same unit of execution time; it is not difficult to
allow different processors to have different event execution speeds.

The IDES project is portable across different communication architectures. Salient
features of different communication networks IDES will run on are modeled with two attributes:
clustered/unclustered and serial/parallel. An architecture has a clustered attribute if subsets of
processors organized as a machine can communicate through shared memory virtually
instantaneously, at least relative to communication off-machine. For such architectures each
"processor" we talk about corresponds to a thread in a machine, a thread that when executing is
responsible for the simulation of a static subset of objects. Despite the shared memory, we still
consider objects to be assigned to processors. We consider an unclustered architecture to consist
of clusters of one CPU each. Next we describe inter-machine communication as being serial (like
an Ethernet) or parallel. In the latter case we presume that a machine has only one network port
for all its processors. The machine may send only one message at a time, and messages from
processors on the machine cannot be sent simultaneously, however machines may transmit in
parallel with no contention. We tacitly assume that a machine may receive messages
simultaneously. For the case of clustered processors we let pc denote the fraction of a processor's
messages that are targeted within the common machine.

Our overall approach is to develop models of execution behavior, synchronization
behavior, and communication behavior. The synchronization and communication behaviors are
driven as a function of the execution behavior, which in turn is described in terms of state
evolution equations. These equations are exact, but will contain unrealizable entities such as ∞ .
Ultimately we will solve these equations approximately using numerical techniques. Those
techniques will necessarily discretize the state space and will necessarily truncate infinite
expansions. Although an exact closed form solution may be unrealizable, we find value in
presenting the equations in exact form, and leave the task of approximation to the numerics. We
will analyze the computational complexity of the numerical solution and show that it is almost
linear in the number of domain points at which the solution is constructed.

14

2.2.1 STATE EVOLUTION MODEL

The key idea behind the analytic model is that the execution state of a processor is a pair (s, r),
where s is the time-of-next-event (time-stamp on the next event to execute), and r is the least
receive-time among all messages the processor has generated since the beginning of the
synchronization window. The state evolves from (s, r) to (s', r') in a single event execution if the
receive-time of a communication generated at time s is r', and if then the time-of-next-event is s'.
The processor terminates its window processing in state (s', r') if s' ≥ r'.

With this simple notion of processor execution state, we can express a single processor's
state-evolution equations in wallclock time for a single window, with a change in state occurring
every unit of execution time. We will always express the earliest window time as time 0, even
though this is true only for the first window. One window is representative of all windows so
long as all processors are synchronized to begin execution at the beginning of the window. In
SPEEDES this may not be the case, as objects may not have all been rolled back to the event
horizon of the previous window. Our assumption that they are can only serve to worsen actual
performance.

The state-evolution equations are expressed recursively in terms of the probability density
functions over the state-space, at each unit of execution time. For all processors i = 0, 1,..., P − 1
and time-steps k = 1, 2, . . . let fi

(k)(s, r) be the joint probability density function over the space [0,
∞] × [0, ∞] of processor i's state after executing the kth event in the window. We define fi

(k)(s, r)
= 0 whenever s > r; fi

(k) should be thought of as an unconditional density over non-terminated
states (we will define other density functions over terminated states also, in order to capture
termination probabilities). To obtain the probability of the processor having non-terminal state in
any region S after executing an event at real-time k, we integrate fi

(k)(s, r) over S. We allow fi
(k)(s,

r) to contain Dirichlet "spikes" so that this formulation encompasses discrete probability masses in
the state-space (as may occur if αi and τi have discrete mass at some points). Initially we take
fi

(0)(0, T) to have a spike with value 1 and fi
(0)(s, r) to be zero everywhere else, where T is some

arbitrarily large number certain to exceed the simulation's termination time.
Supposing fi

(k-1)(s, r) to be defined everywhere, consider the state evolution at step k for an
interior object. We define a density function gi

(k)(s, r) to describe the effect the kth event execution
has on the time-of-next-event state component (as the receive-time component cannot change
without a communication):

daasrafrsg i

rs
k

i
k

i)(),(),(
},min{

0

)1()(−= ∫ − α (1)

This expression reflects that to reach state (s, r) at step k, one must first be in a non-terminated
state (a, r) with a ≤ min{s, r}, and from this state advance the simulation clock by precisely s − a
units of simulation time. Since gi

(k) may be non-zero at terminal states, we can extract the
probability of termination at step k by integrating gi

(k) over the space of terminal states.
The state evolution at a step involving a communication is similar, except that it is possible

for the receive-time component of the state to change:

15

∫
∫ ∫

−−

+−−=

−

∞ −
+

},min{

0

)1(

},min{

0

)1()(

,)()(),(

)()(),(),(
rs

ii
k

i

rs

r ii
k

i
k

i

daasarRraf

dadbasarbafrsh

α

ατ

which can be rearranged as

∫
∫ ∫

−−

+

−−=

−

∞ −
+

},min{

0

)1(

},min{

0

)1()(

.)()(),(

),()()(),(

rs

ii
k

i

rs

r

k
iii

k
i

daasarRraf

dadbbafasarrsh

α

ατ
(2)

The first term accounts for transitions where both components of the state change. As the source
and target states are known, the precise values of the two random variables necessary to effect the
transition may be specified. The notation r+ reminds us that the source states over which we
integrate must have a receive-time component strictly greater than r; the integration specifically
excludes states (a, r). The second term accounts for transitions from states where the receive-
time component is already r; for this the value of the receive-time of the communication generated
must be at least r.

It is notationally convenient to use a density function di
(k) that "switches" between gi

(k) and
hi

(k) as a function of k: for k involving interior objects, di
(k) = gi

(k), and for k involving boundary
objects di

(k) = hi
(k). The probability density function fi

(k) for non-terminal states after step k can be
formulated from these definitions. We define fi

(k)(s, r) = 0 for all k and all states (s, r) where s ≥ r.
For non-terminal states (s, r) we define fi

(k)(s, r) = di
(k)(s, r).

Figure 2.1: Discovery of the processor event horizon.

2.2.2 WINDOW EXECUTION TIME

Next we consider how to use the density functions to describe the probability distribution of the
time required to simulate a window, if communication is instantaneous. Later subsections will
include the cost of more realistic synchronization, and communication.

16

We suppose for a moment that whenever a processor reaches its local event horizon r,
that value is known immediately to all processors. Any processor that has not yet reached its
local event horizon can stop immediately if its own simulation clock exceeds r; likewise, a
processor can stop once its time-of-next-event is larger than the smallest known local event time,
even if that processor has not yet reached its own local event horizon.

We say that the critical transition occurs at (i, n, r') if processor i reaches its local event
horizon r' after step n, and the global event horizon ends up being r'. The fact that the transition
is critical may not be immediately evident to the simulation. Observe that processor i need not be
the first to terminate, nor will the window expansion necessarily stop instantly. In the former case
another processor can reach a larger local event horizon in less time, in the latter case there may
be an unterminated processor whose time-of-next-event is less than r'. These points are illustrated
in Figure 2.1. Processor 3 is first to terminate the window, with a local event horizon of t1. At
that instant, the time-of-next-event of every other processor is less than t1, and so all other
processors continue. Later processor 0 terminates with a local event horizon of r'. At this instant
processor 1's time-of-next-event is t5 > r', so processor 1 stops despite not having reached its
local event horizon. Processor 2's time-of-next-event is only t6 < r' though, and so processor 2
continues. Later, when processor 2's time of next event is t7 > r', it stops and the window is
finally terminated.

There is a probability density function G(i, n, r') associated with the critical transition.
Knowledge of this function's structure will allow us to compute many other performance
measures, for by conditioning on (i, n, r') the description of the rest of the system is simplified.
G(i, n, r') is the product of certain probabilities, and a density function. First observe that if
processor i is to define the global event horizon at simulation time r', then none of the other
processors can have local event horizons less than r'. The probability Lj(r') that processor j's local
event horizon is at least as large as r' is easy to express as the sum over all steps k of entering a
terminal state (s, t) with t ≥ r'. This simply means integrating dj

(k)(s, t) over all (s, t) with r' ≤ s and
t ≤ s.

∑ ∫∫
∞

=

∞

=
1 ' 0

)(),()'(
k r

s
k

jj dsdttsdrL (3)

The probability that all processors other than i have local event horizons as large as r' is just the
product of their values Lj(r'). We multiply this product with a density function that expresses how
processor i may reach local event horizon r' at step n. Obviously, the construction of this density
function must consider that processor i is constrained from tracing a path that terminates in a step
prior to n, or at a local event horizon other than r'. Note that if processor i is in a non-terminal
state (a, b) with r' ≤ b after step n − 1, then whatever path it took to reach (a, b) satisfies this
constraint; density fi

(n− 1)(a, b) already reflects the constraint. Furthermore, the only transition path
to a terminated state (s, r') after step n is from some non-terminated state (a, b) after step n − 1,
with r' ≤ b; e.g., every path to state (s, r') satisfies the conditioning constraint, so that no further
adjustment need be applied to its density function. This realization completes what is needed for
the definition of density G(i, n, r'):

17

∫∏
∞

≠

=

'

)()',()'()',,(
r

n
i

ij
j daradrLrniG

By conditioning on critical transition parameters (i, n, r'), we can compute the distribution of the
remaining number of execution steps that another processor takes before terminating. The
conditioning alters its density equations at each step, scaling them by one over the probability of
the conditioning constraint occurring naturally in the distribution. For j ≠ i we denote processor
j's conditional density by fj

(k)(a, b, r').
First observe that over the region Aj(r') = {(a, b) | a < b and b > r} (i.e. non-terminated

states that do not violate the conditioning), fj
(k) is proportional to fj

(k), e.g., fj
(k)(a, b) = βj

(k)(r’) fj
(k)

(a, b, r’) for some βj
(k)(r’). This can be proven by induction on k, it is a straightforward

consequence of the fact that the density function f appears as a single term in every integral in
equations (1) and (2). This fact has a useful application. In the unconditional system of
equations, let γj

(k)(r') be the fraction of probability mass that transfers at step k from Aj(r') to
region Bj(r') = {(a, b) | b < r'}, e.g.

∫
∫∫

−

∞
− −−

=
)'(

)1(

'

0 '

)1(

)(

),(

))'(1)(,(
)'(

rA

k
j

r

r

k
j

k
j

dadbbaf

dadbarRbaf
rγ (4)

If we were to condition on processor j not entering region Bj(r') during the first k − 1 steps and
then allow any transition at step k, the fraction of conditional probability mass over A(r') that
transfers to region B(r') is precisely γj

(k)(r'), again because fj is proportional to fj over A(r').
We express fj

(k) recursively, beginning with fj
(0) = fj

(0). Given fj
(k− 1) for k ≥ 1, if step k

corresponds to an interior object we define gj
(k) over the entire domain by replacing fj

(k− 1) in
equation (1) with fj

(k− 1); we define hj
(k) with a similar substitution in equation (2) if step k

corresponds to a boundary object. Then we define dj
(k) to switch between gj

(k) and hj
(k) as a

function of k. Function dj
(k) is defined over the entire domain; it expresses how the conditional

probability mass after step k − 1 would spread after step k if no constraints were placed on the
step k transition. But, we must condition on step k not entering forbidden territory, and do so by
scaling the value of dj

(k) by the probability of not transitioning into the forbidden region. This
probability is just one minus γj

(k)(r'), which gives us

 ∈−=

otherwise
rAbaforrrba

rba
k

j
k

jk
j

)'(),(
0

))'(1/()',,(
)',,(

)()(
)(γd

f

18

Figure 2.2: Three feasible regions of the state space for processor j,
conditioned on critical transition (i, n, r’).

This expression reveals the constant of proportionality between fj
(k) and fj

(k); it is a straightforward
exercise in induction to prove that

 ∈−= ∏ =

otherwise
rAbaforrbafrba

k

z
z

j
k

jk
j

)'(),(

0
))'(1(/),()',,(1

)()(
)(γf

After step k, a processor that was not terminated by step k − 1 will be in one of three
regions of the state space, illustrated by Figure 2.2. The horizontal axis gives the time-of-next-
event state component, the vertical axis the receive-time component. Terminated states lie below
the diagonal. Region b ("before" time r') is comprised of non-terminated states whose time-of-
next-event component is still less than r'; region a ("after" time r') has non-terminated states
whose time-of-next-event component is as large as r'; region t has states reflecting termination in
states with both components as large as r'. Then for each step k we define Sj,b

(k)(r’), Sj,a
(k)(r’), and

Sj,t
(k)(r’) to be the integral of fj

(k) over regions b, a, and t respectively; we then define Sj,T
(k)(r’) =

Sj,a
(k)(r’) + Sj,b

(k)(r’) + Sj,t
(k)(r’). These definitions give us the values needed to describe the

probabilistic behavior of processors with respect to the critical transition.
Let Tj(n, r') denote the random number of remaining steps (after step n) that processor j

takes until stopping. One possibility is that j terminated before or at step n; another is if after step
n its time-of-next-event is larger than r'. These observations give

)'()'(}0)',(Pr{)(
,

1

)(
, rSrSrn? n

aj

n

k

k
tjj +

== ∑

=
(5)

For processor j to continue another y > 0 steps it must be in region "b" for n + y − 1 successive
steps, and then pass into region "a" or "t":

19

 +

== +

Τ

++−+

=
∏)'(

)'()'(
)'(
)'(

})',(Pr{)(
,

)(
,

)(
,

1

1
)(

,

)(
,

rS
rSrS

rS
rS

yrn? yn
j

yn
tj

yn
aj

yn

z
z
Tj

z
bj

j
(6)

Each term of the first product is the probability of being in region b after step z, given that the
processor did not terminate before step z.

The BTB window terminates once the last processor stops, e.g. at time

)}.',({max rn?n jij≠
+ (7)

Because arguments of the max are independent, that distribution is expressed using standard
methods of order statistics and the distribution function W(i, n, r') of the termination time simply
adds n. The unconditional distribution of the time to complete a window can thus be viewed as
being instances of distributions W(i, n, r') "mixed" by the density function G(i, n, r'), e.g.

.),,(),,(
1

0
0∑ ∫

−

=

∞
=

P

i

drrniWrniGW (8)

2.2.3 END OF WINDOW CALCULATION

The end-of-window calculation is critical to BTB's performance. A naive and inefficient means of
computing the global event horizon would be to use a min-reduction on each processor's local
event horizon; the entire computation would wait for the last processor to reach its local event
horizon. A better way, as modeled in the previous section, is to disseminate local event horizon
times as they are reached, and rein in processors whose simulation clocks have already advanced
beyond the global event horizon. This can be accomplished with a device we call a preemptive
min-reduction. Implementation of a preemptive min-reduction depends on whether the
communication architecture is parallel or serial. In the parallel case we use the usual reduction-
tree organization for calculating an associative reduction in log P steps. In such an approach,
once a processor has a value to reduce, it goes through a sequence of pairwise synchronizations
with a selected group of log P other processors. At each synchronization the processors
exchange their "working minimums", and both retain the minimum of the exchanged values as the
new working minimum. After the last step every processor's working minimum is the global
minimum.

The preemptive min-reduction requires more asynchrony between itself and application
code than an ordinary reduction. A processor must frequently check for synchronization
messages, and must maintain a working minimum of the smallest value sent to it by any
synchronization neighbor. Before executing an event, the processor compares the time-stamp
with the working minimum, possibly stopping as a result. If it does stop, it immediately engages
in the min-reduction synchronization logic, offering the working minimum as its value. If a
processor reaches its local event horizon before being preemptively stopped, it offers its own local
event horizon to the min-reduction logic. The only way the preemptive min-reduction differs

20

from an ordinary reduction is that a processor may enter the reduction logic before it ordinarily
would, passing as its own value one that it was sent by a synchronization partner.

The preemptive min-reduction slows down the simulation by a limited amount over the
ideal case when communication is instantaneous. Stated precisely, if under instantaneous
communication tideal execution steps are needed to completely terminate a window, then the
additional time required when communication is not instantaneous is no more than 2mlog P’
(provided that there is no contention in the communication channel) where P' is the number of
machines. A proof of this claim is given in Appendix B. For our modeling purposes this is a
useful result, as it permits us to put a nice upper bound on the window execution time by simply
adding another cost to the time predicted under the instantaneous communication model.

The preemptive min-reduction can be implemented in a serial communication medium by
modifying any distributed termination detection algorithm. Termination detection messages are
augmented to carry with them the lowest known local event horizon, and processors update their
working minimum as a result of receiving these messages. One considers a processor to be
terminated if either it has reached its local event horizon, or if it has been stopped by receipt of a
sufficiently small working minimum. Assuming a token-passing approach where the token is
always in motion between processors, the end of the window will be discovered and known to all
processors in no more than 2P'm time once the last processor has terminated. The 2P' term
comes from standard termination detection results showing that no more than 2 round-trips are
needed to detect termination, once it has occurred.

To account for the cost of detecting the window termination, we will add either 2mlog
P’ or 2mP’ to the window execution time, as appropriate for the communication model. Since
this is an upper bound, performance measures so obtained are no better than measures obtained
from a more exact analysis.

2.2.4 MESSAGE TRANSFER

Under the usual definition of BTB, once a processor knows the global event horizon, it sends all
messages whose send-times fall within the window. We account for the cost of communication at
the sender's end; we assume that if a machine has K messages to send, then those messages are
sent serially. A transfer is assumed to take zero time if the message is for a processor in the same
machine, and otherwise takes time m. If the communication model is "parallel", then all machines
are permitted to send messages concurrently without contention. If the communication model is
"serial", only one message at a time is permitted on the communication channel.

Given critical transition parameters (i, n, r'), let Xj(i, n, r') denote the random number of
steps processor j requires for its time-of-next-event to be as large as r'. Recalling Figure 2.2, its
distribution is given by

−

== ∏

−

=)'(
)'(

1
)'(
)'(

})',,(Pr{)(
,

)(
,

1

1
)(

,

)(
,

rS
rS

rS
rS

yrni? y
Tj

y
bj

y

z
z
Tj

z
bj

j (9)

If we know that Xj(i, n, r') = y, then we know that the number of messages processor j has to
deliver is (ignoring that it should be integer) yFj, where Fj is the relative fraction of boundary
objects on processor j that communicate off-machine. Recalling that we assume only one

21

network connection per machine, the random network load offered per machine is the convolution
of independent random loads generated by the processors comprising that machine. Denoting the
set of processors in machine k as Mk, and remembering that the communication phase finishes
when the last message is delivered, the communication transfer cost for the case of parallel
communication is

∑
∈

=
kMj

jjkmachinesp rniXFmrniC)}.',,({)',,(max

This expression is assumed to use the fact that given critical transition parameters (i, n, r'), then
Xi(i, n, r') = Fin. Once the distribution of the convolutions for each machine is known, the
distribution of this max is expressed using standard methods of order statistics.

In the case of serial communication the conditional communication cost is the sum

.)',,()',,(

+= ∑

≠ ij
jjis rniXFnFmrniC

IDES aims to explore a communication strategy that does not withhold message traffic
like standard BTB. Under this strategy messages are transmitted as they are generated, but it
requires the recipients to filter out any messages whose send-times exceed the global event
horizon. Assuming that communication can occur in parallel with computation (which is
reasonable with today's architectures that dedicate processors to manage communication), this
strategy eliminates the serialization of communication at the end of the window. However, the
cost of the strategy is that more messages may be sent; at the end of the window there may be a
backlog of irrelevant messages waiting for delivery. Our model will help to assess situations
where the alternative strategy may be beneficial.

Given the threat of excessive communication, it is critically important that the global event
horizon be known as soon as possible to all processors. One way to accomplish this is to have
each processor broadcast its local event horizon if it should reach it before being otherwise
preempted. For the case of parallel communication, standard broadcast trees will implement the
necessary communication. Given any two processors i and j, we denote by h(i, j) the number of
communication hops between a broadcast by i and its receipt by j, and know that j will receive a
message broadcast by i in m × h(i, j) time.

Processor j will terminate when it either reaches its own local event horizon, reaches
another processor's local event horizon before its own, or receives a broadcasted local event
horizon smaller than its own time-of-next-event. Conditioned on critical transition parameters (i,
n, r'), we find an upper bound on j's termination time by assuming that it can only be preempted
by processor i's broadcast. If j were allowed to run until it reached its local event horizon, the
number of steps executed, denoted Lj(r’), is distributed as

.
)'(

)'(

)'(

)'()'(
})'(Pr{)(

,

)(
,

1

1
)(

,

)(
,

)(
,

rS

rS

rS

rSrS
yrL y

Tj

y
tj

y

z
z
Tj

z
aj

z
bj

j

 +
== ∏

−

=

22

There are three cases governing j's termination. The first occurs when Lj(r') < n + m × h(i, j), in
which case processor j has reached its local event horizon before being preempted by i. The
second case is if Xj(i, n, r') < n + m × h(i, j) < Lj(r'), where processor j is preempted by the arrival
of processor i's broadcast. The final case is when Xj(i, n, r') > n + m × h(i, j), so that processor i's
message preempts j some time after arrival.

The distribution of the number of execution steps Ej(i, n, r') that processor j takes before
terminating is a mixture (sum) of

° the probability that Lj(r') < n + m × h(i, j), times the distribution of Lj(r') conditioned on
this inequality;

° the probability that Xj(i, n, r') < n + m × h(i, j) < Lj(r'), times the distribution of Xj(i, n,
r'), conditioned on this inequality;

° the probability that Xj(i, n, r') > n + m × h(i, j), times the distribution of Xj(i, n, r')
conditioned on this inequality.

The terms expressing Ej(i, n, r')'s distribution are obtained mechanically.
Having described the distribution of the number of messages processor j will send, we

now turn to the description of the time required to send them. The critical factor is whether the
communication channel can keep up with the load placed upon it. If the average number of steps
between inter-machine communications is as large as m, then no message has to wait when it is
handed off for transmission, and processor j's message transfer phase is completed m time units
after its last transmission. Otherwise the communication channel is busy from the time the first
message is generated until the last one is delivered. These times are all deterministic functions of
Ej(i, n, r'), whose distribution we know.

While the case of serial communication has the most to gain from the alternative
messaging strategy, it is much harder to analyze. The aggregate rate of messages to be sent can
be computed assuming that no processor has terminated, but the rate decreases as processors
stop. We can bound performance though by assuming that the initial aggregate rate is sustained
throughout the window. Then, as before, there are two cases. If the aggregate rate is less than
1/m messages offered per unit time, then a message does not wait, and the overall communication
phase is terminated m time units after the last message is generated. Otherwise the
communication channel is saturated and we compute the end of the communication phase by
determining when the last message offered to the channel is finally delivered. These measures are
again deterministic in the length of the computation phase, whose distribution is known.
Although we have not done so here (in the interests of space), one can express these functions in
a manner similar to Cs() and Cp(), except that it will be easiest to express the sum of the window
termination time plus communication delay in a single function of a processor's stopping time.

2.2.5 Overall Performance Measures

Solution of the equations describing state occupancy yields a great deal of information about the
model. We have described entire probability distributions, and so can examine rare-event
probabilities, correlations, maximum buffer needs, and other measures that are costly to estimate
using discrete event simulation. For our immediate purpose though we consider one overall
measure of performance that is directly related to the speed at which the simulation is executed.

23

That measure is the average ratio of execution time per window to simulation time advanced in
that window. The smaller the ratio, the faster the simulation is executing. Conditioned on the
critical transition parameters, the ratio is

'

]log2)]',,([)',,([
'

]log2)',,()',,([
)',,(

r
PmrniCErniME

r
PmrniCrniME

rriU

p

p

++
=

++
=

(10)

The unconditional average time per unit simulation is now obtained by using the density function
for the critical transition

∑ ∑ ∫
−

=

∞

=

∞
=

1

0 1
0

.),,(),,(
P

i n

drrniUrniGU (11)

A model of this type is of limited utility if its solution takes too long to be practical. We have
done a complexity analysis of the solution procedure and found that the asymptotic time
complexity is O(PKN2 log N), where P is the number of processors, K is the number of time-steps
for whose densities we solve, and the two-dimensional domain at a step is approximated with N2

points. Thus, the solution is almost linear in the total number of state points where probabilities
are calculated. In Appendix C we sketch the computational complexity of solving the various
equations describing our model's behavior.

2.3 EXPERIMENTS

We have written a discrete-event simulator of the abstract model described in this paper. The
simulator accepts a number of parameters describing a model instance, including

° The number of objects.
° The number of machines and the number of processors per machine.
° The network interface delay (NID), in event execution time-steps.
° Whether the inter-machine network is parallel or serial.
° An initial random number seed.
° The simulation termination time.
° Parameters of τ distribution (assumed to be identical for all objects).
° Load imbalance parameter.

We derive other simulation parameters from an abstract model of an underlying simulation
problem. Given N2 simulation objects, we presume them to be arranged in an N × N torus. An
object is presumed to be able to communicate with adjacent objects. The rest of the simulation
parameters for a balanced workload model are determined by assuming the objects are partitioned
rectilinearly, with squares mapped to machines. A machine's square is partitioned further, evenly,
among processors. Given ni objects mapped to processor i, we determine the frequency of
boundary object events to interior object events (or vice-versa) by the ratio of the number objects

24

lying along the boundary of a processor's square to those within its interior. In the limit of
increasing ni there are 4ni

1/2 interior object events for every boundary object event.
For a large number of objects, the arrival process of events will be nearly Poisson;

correspondingly we take αi to be exponentially distributed, with rate ni (scaling simulation time so
that an object's event rate is 1). The gap between send and receive time is taken to be a constant
c, plus a non-negative Gaussian. Throughout our experiments we use c = 0.1 and a non-negative
Gaussian with mean 1 and standard deviation 0.5.

We control the load imbalance parametrically, as follows. Let f1 ≥ f2 ≥ ... ≥ fP be P
fractions that sum to 1. Considering how objects are partitioned among processors, the width of
the ith column of processors spans fi of the width of the domain; likewise the height of the ith row
of processors spans fi of the domain. If we describe a processor in terms of its (i, j) position in
the matrix of processors, that processor gets fi × fj × N2 objects. This is illustrated in Figure 2.3.
The simulator allows us to specify the ratio of f1

2 to 1/P, i.e. the ratio of maximum workload to
average workload. If we further assume that fi − fi+1 is constant for all i = 1,2, ... , P1/2, then ratio
f1

2P completely determines the load distribution.

Figure 2.3: Abstract workload model partitioned among machines and processors.

In these experiments we compute "speedup" as the ratio of the total number of committed
events executed, divided by the (simulated) wallclock time of the parallel simulation run. Also,

25

the experiments are run for a long time. Informal experiments show that the statistics we observe
vary by less than 1% given different initial random number seeds. Consequently we forsook the
construction of independent replications and confidence intervals with good assurance that the
data we observe is statistically sound.

In our first set of experiments we sought to get an initial feel for the relative importance of
presending messages or not, and using parallel communication channels or serial channels. We
examined a "base-line" model with 5122 = 0.25M objects, executed on an architecture with 16
machines, each machine containing 4 processors. To be conservative we selected a network
interface delay of 5; we also considered a perfectly balanced workload. A speedup of 46 was
predicted for a parallel communication channel with no pre-sending; this figure increases to 55.5
when pre-sending is used. In the serial case, without pre-sending the speedup is 25, but with pre-
sending it drops to 14.7.

Figure 2.4: Speedup as a function of problem size, for varying Network Interface
Delays and pre-send policies.

These behaviors are understood if we consider the ratio of interior objects to boundary
objects on each machine. For 1282 = 214 objects that ratio is 7.25; for 5122 = 218 objects the ratio
is 31.25; for 10242 = 220 objects the ratio is 63.25. With 5122 objects, under pre-sending the
offered load to the network interface (1 message every 31.25 event executions, on average) is less

26

than the bandwidth at the network interface (1 message every 5 event executions). The network
can handle existing traffic before new traffic is generated, so at the end of the synchronization
window we have a shorter delay waiting for communication transfers to complete. Now, in the
case of a serial network, the aggregate rate of communication offered to the network is 16
messages every 31.25 event executions on average, just over 1 in 2. The network is capable of
handling only 1 in 5, and so a backlog is created; pre-sending only serves to overload the network.
That the case of serial communication should perform so "well" can also be explained. On each
machine, for every 31.25 events executed, 5 time units of communication work are generated.
But, as this is serialized among 16 machines, we have 5 × 16 = 80 units of communication for
every unit of computation. The ratio of computation to communication is then 0.39, which, if
viewed as a processor's "efficiency", predicts a speedup of 25, which is what we observe.

Figure 2.5: Comparison of different architectures as the Network Interface Delay varies.

Evidently there is interplay between NID and computation to communication ratio we
should explore; under our partitioning assumptions we control this ratio through the number of
objects simulated. Figure 2.4 describes the results of such a study. The graph plots number of
objects versus speedup, with each line tracking changes due to increasing problem size for a fixed
NID and pre-send parameter. This graph suggests that there is a "cross-over" point where pre-
sending begins to be advantageous. We see that good performance is possible, but that relatively

27

poor performance is also possible. It should come as no surprise that the difference boils down to
the computation to communication ratio. Higher NID values can be overcome only by a larger
number of objects. However, IDES supports simulations with millions of objects, on an
architecture similar to that modeled here. These simulations have "locality" of communication,
similar to that modeled here.

Figure 2.6: Performance as a function of load imbalance.

We next turn to an experiment that examines how architectural characteristics may affect
performance. For this study we considered 5122 objects, balanced workload, present messages,
and NID costs of 1, 2, 3, and 4. We considered four architectures that allocated 64 processors to
machines in different ways. A 1 machine architecture is just a large shared-memory machine; a 4
machine architecture is a small cluster of medium-scale multiprocessors; a 16 machine architecture
is a medium sized cluster of small-scale multiprocessors; a 64 machine architecture is a large
cluster of ordinary processors. Figure 2.5 depicts the results. The most striking feature of this
graph is how performance of the 16 processors/machine system degrades with increasing NID,
and also how the performance of the 16-machine model plummets between NID = 4 and NID =
10 (the performance for not presending is actually worse in this case). For both the 4-machine
and 16-machine architectures the single network interface per machine is a bottleneck. This data

28

reminds us of how critical it is to assess a problem's offered network load with respect to the
ability of the network to carry that load.

It is also interesting to note that for smaller NID the single processor per machine
performance is slightly better than the 4 processors per machine performance. The increased
locality of reference achieved by the 16-machine system is overcome by the serialization of
communication at the network interface. Finally, somewhat surprisingly, the performance of the
"ideal" shared memory machine is not markedly better than that of the 64-machine or even 16-
machine architectures.

Next we consider the sensitivity of performance to variations in workload balance. For
this experiment we used a base-line system of 5122 objects, parallel communication network, 64
processors on 16 machines, and a NID value of 4. We then varied the ratio of most heavily
loaded processor to average processor load between 1 and 2.0. Figure 2.6 illustrates the results.
This graph plots both the predicted speedups, as well as the best possible speedup one can obtain
given that level of load imbalance (64/1 ratio). It is interesting to note there is relatively little
sensitivity as the load balances moves away from perfect balance. Only in the region of 1.3 or so
does the curve begin to behave as one might expect. The flatness of the curve is emphasized by
comparison with the best possible performance given the load imbalance parameter.

To understand this behavior we looked more closely at the data. In the case of perfect
load balance, in an average window an average processor executed approximately 15% more
events than it ultimately committed. The "extra" events amount to 5.5% of the window's
duration. Then, it spends 11% of the window's duration completing the min-reduction to
establish the window size, and then another 3% of the window's duration waiting for the data
messages to be completely delivered. Thus, for 19.5% of the window the average processor is
engaged in activities that a serial simulator would not. For the most part, these percentages
explain the speedup of just under 50. The main contribution to this overhead is the min-reduction
wait, and this wait is due to load imbalance that is inescapable given that the workload in this
model is stochastically driven. While the number of objects assigned to each processor is the
same, the number of events committed by each processor is not. The 15% extra events executed
are not so much a cost as a measurement of the time it takes in BTB to discover the end of the
synchronization window. A similar analysis on the data for a load imbalance factor of 1.75 shows
that in an average window an average processor spends 14% of the window executing events that
are not committed, 30% of the window in the minreduction logic, and 3% of the window waiting
for data messages to be delivered. These figures sharply reveal the effects of load imbalance.

It is interesting to note that at a load imbalance factor of 2, the performance is close to the
theoretical optimum. By this point performance is dominated by the differences in mean event
generation rates; in the balanced case load imbalance was caused by stochastic variance. There is
a lesson in this data— that in a stochastic simulation one may be able to tolerate a significant
degree of load imbalance due to some imbalance in activity rates. Achieving perfect balance in
event generation rates may yield little performance gain if the workload is within 10 or 20 percent
of being balanced.

29

Figure 2.7: Sensitivity to the constant portion c of the send/receive-time gap random variable τ.

A last experiment (Figure 2.7) looked at sensitivity to the constant portion c of the
send/receive-time gap random variable τ. In applications of YAWNS it has been observed that a
small constant can improve performance a great deal over that of c = 0. We observe the same is
true here. We again consider the base system of 5122 objects, 16 machines, 64 processors, an
NID of 4, and pre-sent messages. Varying c from 0 to 0.1 we predict a performance gain (over c
= 0) of 30% using a constant, 0.02, that represents less than 5% of the mean of the distribution;
an 80% gain is obtained with c = 0.1 (less than 10% of the mean). Some constant might be
deemed essential, but it can be quite small to achieve significant performance gains.

30

3 THE IDES SYSTEM

We believe that the effort we applied in developing analytic and simulation models of IDES
helped us to understand much more deeply how such a system must operate, and the sort of
performance sensitivities we could expect from the system once built. Armed with this
confidence, we proceeded to implementation. This section describes considerations in the design
and implementation of the IDES parallel simulation system. IDES is a Java-based
parallel/distributed simulation system designed to support the study of complex large-scale
enterprise systems. Using the IDES system as an example, we discuss how anticipated model and
system constraints molded our design decisions with respect to modeling, synchronization, and
communication strategies.

3.1 SYSTEM DESIGN GOALS

To motivate the IDES system design, consider an example domain: simulation of a U.S. Health
Maintenance Organization (HMO). The IDES design was governed by three goals. The first goal
deals with the structure of the simulation framework to express the systems to be modeled: link
low-level, complex submodels with high-level, policy driven resource allocation techniques to
perform cost / benefit trade-off analyses. In the HMO example, each patient is modeled with
complex disease processes represented by differential equations— including risk for coronary
artery disease. Medical treatment policies interact with disease models to affect the health
outcome of patients.

The second goal mandates a type of question the simulation model must be able to answer.
Using IDES, we want to study the use of screening techniques to detect an otherwise invisible
system deterioration, itself a contributor to a catastrophic failure we would like to prevent. In the
HMO example, we would say the early detection and treatment of coronary artery occlusion may
extend life and saves later costs when heart failure might otherwise occur.

The third and final goal specifies the portability of the system: development of simulation
models using IDES should be within the reach of systems analysts, and support deployment
across heterogeneous computing architectures. IDES runs on single-processor systems, networks
of workstations, and multiprocessor computers with shared or distributed memory. In addition,
IDES incorporates a web-based interface for distributing simulation subcomponents across the
enterprise network.

In support of these goals we have developed the IDES framework. IDES is an object-
oriented simulation system capable of supporting complex, massive model, parallel discrete event
simulations transparently across heterogeneous platforms.

3.2 SYSTEM CONSTRAINTS

In support of these design goals, a number of system constraints had to be overcome. First and
foremost, IDES had to be capable of hosting massive models with relatively large state. The
example HMO model includes ten million patients and one hundred regional hospitals and
facilities. Enterprise simulations evolve differently than more traditional parallel simulation
models such as queuing and PCS networks. For example, simulation entity behavior is not
governed by a simple draw on a random number stream, but through the evaluation of complex,

31

coupled state-evolution equations. Hence, the difficulty of extracting lookahead discourages the
use of a purely conservative protocol.

Since the data state of each component is large, we use multiple machines to acquire the
memory needed. While a conservative approach to synchronization could use less memory than
an optimistic approach, lack of lookahead limits the effectiveness of conservative synchronization.
Consequently very large state coupled with lack of lookahead motivates use of Breathing Time
Buckets (BTB) developed by Steinman (1992) to constrain optimism. Furthermore, sheer model
size and portability concerns motivated investigation of impact of architecture on performance.

The state of simulation entities is computationally complex. In the HMO example,
evaluation of complex disease models is computationally expensive. Parallelism is evident with a
large population.

3.3 SYNCHRONIZATION

Synchronization is generally viewed as the key source of difficulty when executing discrete-event
simulations. Conservative synchronization methods ensure that every bit of computation executed
contributes directly to the final simulation state; optimistic methods support speculative
computing where some computations may ultimately be undone. The task of building a parallel
simulation framework is understandably easier with a conservative approach. However, there is
ample evidence that reasonable performance can be achieved under conservative synchronization
only if there is easily extracted lookahead in the simulation model. This simply means that
without a great deal of effort it is possible to examine the state of a submodel (the term we’ll use
to identify that portion of the simulation model that is cohesive in the sense that all simulation
work associated with a submodel will be done by the same CPU) and find a lower bound on the
time when next that submodel performs some action that affects the state of another submodel.
Dissemination of lookahead provides the slack needed between processors that permits them to
make forward progress without concern for so-called straggler messages (messages with time-
stamps less than the recipients local simulation clock).

Our initial intent was to use a synchronization protocol based on YAWNS by Nicol (1989,
1993). YAWNS is conservative, and when suitable lookahead is available, is provably scaleable.
However, as we studied the class of model problems we began to see that lookahead would not
be easy to extract without requiring the IDES user to provide more information about the model
than we thought the user would typically care to provide. Consider again the HMO model. A
patient’s risk profile with regards to, say, heart disease, is dependent upon a number of risk
factors including life-style choices, family history, and known health problems within ones family.
A differential equation describes the probability distribution of the time of next heart attack, as a
function of those risk factors. If any of those risk factors were to change, a heavy-weight
computation would be required to recompute the probability distribution. The sort of lower-
bound calculation needed to compute lookahead would have to identify the worst-case
combination of risk factor values and assume they simultaneously changed to this worst case
scenario, and then compute a worst-case time-to-heart-attack distribution. The only alternative is
to require the modeler to provide this sort of worst case information (at the risk of the modeler
being wrong!). We eschewed those constraints in favor of a limited form of optimism that
constrains the sort of large-scale memory consumption that general Time Warp simulation is
capable of requiring.

32

We next considered the Breathing Time Buckets (BTB) synchronization approach, as it is
essentially an optimistic version of YAWNS. While being optimistic, it ensures that messages
between submodels are “correct” in the sense that they will not be canceled. In its simplest form,
BTB works as follows. Simulation objects synchronize at points in simulation time (the
determination of which is the point of the protocol). At a synchronization point, messages are
exchanged between submodels; as these messages are correct, they can be incorporated into their
recipients’ event lists. Next a submodel executes events on its event list in time-stamp order,
performing state-saving. As messages to other submodels are generated, these are buffered but
their so-called receive-times are noted, the times when the message affects the recipient (as
opposed to the time when the sender sends it, which may be different). A submodel tracks the
minimum receive-time of any message it generated but has not yet delivered. At the point when
the time of next event is greater than or equal to the minimum such receive-time, the submodel
has reached its local event horizon. BTB defines the next synchronization point as the minimum
local event horizon among all submodels, this is called the global event horizon. The global event
horizon essentially establishes the least next time when an as-yet-unknown message can arrive at a
submodel and change its state. Therefore, all computation up to the global event horizon is
known to be “good” in that even though computed speculatively, it did not depend upon a
message from another submodel. Of course, a submodel may have been advanced beyond the
global event horizon, and so (at least conceptually) is rolled back to the global event horizon.

A naive way of determining the global event horizon is to have each submodel execute all
the way until reaching its local event horizon, and then engage in a global minimum-reduction
operation to identify the least such. This would actually maximize the amount of memory used
for state-saving in a BTB approach, in that each submodel would be executed as far as could be
possible, saving state the entire way. Clearly, to reduce state-saving costs one needs to
disseminate local event horizons as they are discovered. Towards this end we developed an
algorithm— the preemptive min-reduction— to attempt to identify and distribute the global event
horizon quickly.

In a normal reduction a processor offers a value to the reduction operator and then blocks
until all processors have offered values and the reduction is performed. A processor interacts
with a preemptive min-reduction somewhat differently. Each processor has a “working
minimum” in the case of BTB the least observed receive time on generated messages. As the
computation progresses, the working minimum changes in a monotonically non-decreasing
fashion.

The reduction framework in a processor maintains a “partially reduced’’ value, initially
infinity, to reflect the minimum value reported to that processor in the course of the preemptive-
reduction. Periodically (say, after each event) a processor compares its time of next event with
the partially reduced value. If the former value is smaller, the processor’s progress has been
preempted by knowledge of the existence of a local event horizon, somewhere, that is smaller
than the processor’s own. It then engages in the reduction logic, offering the partially reduced
value as its own.

It blocks until the reduction is completed and the global event horizon is identified.
Alternatively, if a processor reaches its local event horizon without being preempted, it simply
engages in the min-reduction. All that is needed to implement this algorithm is user code access
to the partially reduced value that is typical in tree-based reduction algorithms. We have based
our implementation on the non-committal barrier synchronization by Nicol (1995).

33

3.4 IDES IMPLEMENTATION

The IDES design has been implemented separately in both C++ and Java. This paper deals
exclusively with the Java implementation.

3.4.1 CLASS STRUCTURE

The two main simulation classes are Entity and Message. All simulation objects are represented
by the Entity class which encodes individual state and behavior. Entities communicate with one
another by sending Messages which contain routing information as well as message content.

Two additional base classes complete the
IDES framework: EventQueue and Router. In
IDES, a simulation is decomposed into a number of
submodels, each consisting of a subset of all
simulation Entities (Figure 3.1). Each submodel
contains an EventQueue and a Router.

protected double wakeup
(double time) {

// CHECKPOINT THE STATE OF THE OBJECT, AND
// UPDATE ENTITY TO THE CURRENT TIME.
checkpoint(time);
update(time);

// PERFORM INTERNAL ENTITY EVENTS.
performInternalEvent();

// RESPOND TO EXTERNAL MESSAGES.
while(!messages_.isEmpty())
 performMessage(messages_.dequeue());

// DETERMINE TIME OF NEXT WAKEUP.
return forecast();

}
Figure 3.2: Entity event processing routine.

Execution of simulation events for Entities on the submodel is controlled by the
submodel’s EventQueue. The role of the EventQueue is simply to hand the thread of execution
control to the appropriate Entity at the appropriate simulation time, by invoking the Entity’s
wakeup routine (Figure 3.2). In this routine, the Entity executes the events that should occur at
that time, including response to and sending of Messages if required. It then gives execution
control back to the EventQueue, having forecast (Figure 3.3) the time of next wakeup. Hence
each entry in the EventQueue consists of an Entity reference and the simulation time at which the
Entity should be “woken up.”

Figure 3.1: IDES model decomposition.

Sub-Model

Router
Event
Queue

Sub-Model

Router
Event
Queue

Entity
Entity

Entity
Entity

EntityEntity

34

protected double forecast() {

// CALCULATE EARLIEST INTERNAL EVENT.
wakeupTime_ = forecastInternal();

// CALC. EARLIEST MESSAGE RECEIVE TIME.
if (!(messages_.isEmpty())) {
 double messageTime = messages_.headKey();
 if (messageTime < wakeupTime_)
 wakeupTime_ = messageTime;
}

// RETURN EARLIEST TIME. THE ENTITY WILL
// BE WAKEN UP AT THIS TIME.
return wakeupTime_;

}
Figure 3.3: Entity forecast.

The Router is responsible for routing and filtering all Messages that are sent to and from
the Entities on the Router’s submodel. The Router is also responsible for establishing
synchronization windows with other Routers in the simulation, according to the algorithm
discussed above.

3.4.2 DECOMPOSITION MECHANISM

Entities are arranged in a hierarchy in which parent Entities are responsible for instantiating child
Entities. We refer to the highest level parents as the top-level Entities.

For a particular simulation run, each top-level Entity must be assigned to a specific
submodel. We implement this mapping as a matrix of size (number of top-level Entities) x
(maximum number of submodels allowed). For any top-level Entity, given the number of
submodels in the simulation, the corresponding matrix entry identifies the assigned submodel.

Invocation of the IDES executable code instantiates a single submodel to which two
arguments must be passed: (1) the total number of submodels in the simulation and (2) the unique
identifier for this particular submodel. Each submodel will then instantiate only the top-level
Entities that have been assigned to it, based on the matrix described above.

It should be noted that the Entity to submodel assignment is an initial (simulation start-up)
assignment only. We do not restrict Entities from migrating from one submodel to another during
a simulation run.

3.4.3 CODE DISTRIBUTION

The IDES distribution mechanism is also implemented in Java. At start up, the IDES Server is
running on every machine that may be used as a host for the simulation run. The Server’s user
interface (Figure 3.4) allows the owner of the machine to control the use of the machine by
remote IDES Clients. The IDES Client (Figure 3.5) is run by the simulation owner (the “user”).
For a simulation run, the user indicates (1) the directory in which the simulation executable code
resides, and (2) the machines on which the simulation is to be run. As each machine is selected,
the IDES Client contacts it to ensure that the IDES Server is running there, ready to accept
transmission of the simulation code.

35

Upon user command, the IDES Client transmits to each participating Server the following
data: (1) the simulation executable code, (2) the identification number for the submodel to be
instantiated, and (3) the total number of submodels in
the simulation. The Server then invokes the
executable on its machine, creating the proper
submodel. The Client also sends to each Server the
addresses and submodel identification numbers for all
other participating machines. This information is
passed to the executing submodel whose Router then
uses it to establish a communication link to the
Router in each of the other submodels. The
simulation is now ready to run.

3.4.4 STATE SAVING MECHANISM

Within BTB, individual simulation submodels are
allowed to optimistically surge forward, speculatively
executing events on their events lists in time-stamp
order. Since receipt of a message with receive time
less than the current event execution time necessitates
a state rollback, submodels must perform state saving.

Driven by the need to support massive models
and thus limit the amount of saved state, we first
considered the naive approach of state saving only
once at the window boundary. The simulation would
then be allowed to process forward speculatively until
detection of the event horizon. With the event horizon
determined, all simulation submodels would be rolled
back to the beginning of the window and run forward
again to stop at the event horizon. While this scheme
minimizes the amount of saved state, it necessitates
execution of the simulation twice.

Next we considered going to an incremental
mechanism whereby individual state variables are saved as they are changed. However,
implementing this scheme in Java appeared complicated and overly taxing on the user of the
system. In addition, experiments showed that due to the coupling of state variables in the objects
of interest to IDES, execution of a typical event touched most state variables anyway.

abstract public class Entity extends Persistent implements
Serializable
{ …}

Figure 3.6: Entity class declaration.

In the face of these considerations, we implemented what is commonly known as “copy’’
state-saving— see Franks, Gomes, Unger, and Cleary (1997) for a discussion of various state-
saving policies. Immediately prior to receipt of a message or processing of an event, the system

Figure 3.4: IDES code distribution server.

Figure 3.5: IDES code distribution client.

36

checkpoints the mutable state of the affected entity. The state saving mechanism relies on the
Java implementation of object serialization. All IDES object classes are required to derive from
Entity (Figure 3.6), which itself derives from Persistent.

The class Persistent contains the routines for checkpointing and rollback of individual
Entity state. This is accomplished through an internal ordering of ByteArrayOutputStreams
serialized through an ObjectOutputStream. In the IDES object class hierarchy, all classes from
the Entity down are required to implement Serializable (Figure 3.7). The one drawback to this
mechanism is the requirement that object images must be restored to a new address. In most
cases, the user wants to update the state of an existing object with only those variables that could
possibly change since the last checkpoint, and not replace all Entity state values completely. In
order to accomplish this, our implementation relies on the Serializable mechanism to restore the
state of transient (or non-persistent) variables into a new address space. Then a Persistent
routine, clone, copies the contents of the newly restored object image into the original image.

public class
Car extends Entity implements Serializable {

public Car (Router router,
String name,
int dealerId,
double maintenanceInterval,
double messageDelay) { }

…}
Figure 3.7: Car class declaration.

3.4.5 EXAMPLE SIMULATION PROBLEM

Our example problem domain is an automobile
franchise comprised of Dealers, Owners, and their
Cars.

Dealers sell and service Cars. They also on
occasion will issue recalls on certain defective Cars
they have sold. Services on Cars include both routine
maintenance work and recall repairs.

Owners purchase Cars from Dealers. They may
request service from any Dealer, but recalls will always
be received from the original (selling) Dealer.

Cars deteriorate with time (Figure 3.8).
Routine maintenance slows the rate of deterioration,
but cannot prevent it completely. Defects in Cars can be corrected by recall repair work. The
useful life of a Car is affected by the presence of defects and the service work received over the
life of the Car. When a Car dies, its Owner purchases a new Car from the same Dealer from
which the first Car was purchased.

The following code sample (Figure 3.9) is from the Dealer class, in which a Dealer
performs a recall event.

"L
ife

 U
ni

ts
"

Time

Maintenance

Recall Repair

Maintenance

Maintenance

Maintenance

Figure 3.8: Car deterioration model.

37

private void performInternalEvent () {
if (time_ == recallTime_) {

// SEND MESSAGE TO CAR TO BE RECALLED.
sendMessage(new Message(myId_,

recallCarId_,
currentTime_,
(currentTime_ + 0.5),
Message.RECALL));

}
}

Figure 3.9: Dealer sending a message.

The sendMessage routine is used to send a Message to the Car to be recalled. In creating the
Message, the sending and receiving Entity identifications, the send and receive times, and the type
of the Message must be specified.

private void performMessage (Message msg) {
 if (msg.type() == Message.RECALL) {

// PERFORM RECALL.
lifeUnits_ += .1;
if (lifeUnits_ > 1.0)

lifeUnits_ = 1.0;
}

}
Figure 3.10: Car recall message handler.

Response to a received Message is done in performMessage (Figure 3.10). The example
above is for a Car that has received a recall Message.

After having decoded the recall message, the Car performs the recall— here simply an
adjustment of the Car’s life units— and then returns immediately to the event-processing loop.
Next the Entity must determine the future wakeup time based on pending internal events and
messages— a function performed by forecast. Since the recall affected the life units of the Car,
and hence the internal state of the Entity, the forecast routine must determine when the next
internal Entity event will occur.

protected double forecastInternal() {

// EVALUATE DIFFERENTIAL EQUATIONS
// TO DETERMINE PREDICTED DEATH TIME.
double nextTime = calcDeathTime();

// SCHEDULE MAINTENACE IF PRIOR TO DEATH.
if (nextTime > maintenanceTime_)

nextTime = maintenanceTime_;
return nextTime;

}
Figure 3.11: Car forecast internal event.

Forecast internal event (Figure 3.11) calculates the time of next internal event for an
Entity. In the simple example given for a Car, the only possible two internal events are the demise
of the Car, or a request for maintenance. Once the minimum has been determined, the forecast

38

routine (Figure 3.3) then decides if the next internal event, or receipt of a pending message, will
result in the next Entity wakeup.

39

4 BATCH SIMULATION SYSTEM

In addition to developing a system to support enterprise simulation, we sought to implement a
batch simulation system. Our goal utilizing standardized off-the-shelf distributed object and
clustering tools, was to develop a batch simulation systems with the capability to run multiple
instances of an application distributively across a heterogeneous network of computers. The
initial proof of concept demonstration was to support multiple, distributed instances of SPICE
running in parallel across a network of homogeneous Linux workstations.

SPICE is an electrical circuit simulation package developed by UCB. Unsupported
versions of SPICE are available under public licenses across the network. Many commercial
vendors have wrapped and enhanced the SPICE application into products with graphical user
interfaces. The majority of the electrical circuit simulation performed at Sandia is currently done
using a commercial product, MicroSim PSpice (based on SPICE v2G6 an older FORTRAN/C
version), which runs single-threaded under Microsoft Windows NT.

A SPICE circuit simulation takes as input a net list, and generates one or more output
files. There are two particularly demanding types of SPICE circuit simulations performed at
Sandia: (1) a number (hundreds) of iterations of SPICE (each a 5-10 minute problem) varying
individual parameter values in a single input net list; and (2) single execution of SPICE (a single
two day problem) using one complex input net list. The second application could only be sped-up
through use of a multi-threaded version of SPICE on a multi-processor machine— and this was
not the focus of our development. The focus of this effort is the development of software to
demonstrate a speed-up of the first circuit simulation application area in a homogenous
environment, and later to extend this to an infrastructure supporting general batch oriented
simulation in heterogeneous environments.

Our approach was to utilize standardized, off-the-shelf distributed object and clustering
tools, to develop the capability to run multiple instances of an application distributively across a
heterogeneous network of computers. Seated at a single computer terminal, a user should supply:
(1) an application executable for each computer platform supported on the heterogeneous
network, (2) one or more input files, and (3) a location for collection of the application results. A
general solution would include the following steps: (1) executable distribution to remote
computing platforms; (2) configuration and input file management and distribution; (3) remote
model execution; and (4) program output capture and consolidation. The distribution of input
files, remote execution of multiple instances of an application, and the subsequent consolidation of
output should be details beyond the user’s concern.

At the outset of this work we evaluated publicly available batch systems and found none
that would meet our needs and so embarked on development of a batch system from scratch.
Despite the many man years of effort needed to develop other batch systems, we believed that the
project could be completed in the allocated time by using state-of-the-art programming techniques
(in particular, CORBA to provide a distributed object-oriented programming environment) and by
limiting our attention to the needs of the particular project. Indeed, rapid progress on the
CORBA based batch system was achieved and will be discussed in more detail below. However,
several factors led us to reconsider the use of another batch system with publicly available source
code. The first factor was the immaturity of many of the CORBA implementations. Second, one
of the publicly available batch systems, DQS, seemed much more promising than it did on the first
evaluation and we discovered another batch system, PBS, that was then undergoing beta testing

40

and seemed to meet all of our requirements. The final factor was the desire by the Sandia SPICE
team to begin immediate use of IDES. The CORBA based system could not yet schedule parallel
jobs and thus could not yet be deployed. Thus, our implementation strategy was revised to
immediately concentrate on modifying DQS to schedule jobs. Our experiences with DQS will be
summarized below. We plan to follow the development of PBS and CORBA to determine if it
would be desirable to switch at some later date to PBS or resume development of our own
CORBA based system.

4.1 CORBA BATCH SYSTEM

The Common Object Request Broker Architecture (CORBA) permits objects residing on one
node in a network to be accessed by processes on different nodes in a completely transparent
fashion. The process that implements the objects is the server for that object and processes that
remotely invoke the methods of that object are clients of that server. CORBA provides a clean,
simple way to implement client/server systems and is an ideal way to implement a batch
scheduling system.

In a batch scheduling system there are several nodes that provide computing resources. In
our CORBA batch system, each of these nodes has a server, the Machine Server, for objects that
provide information about the machine and start and manage jobs for that machine. A central
batch scheduling process acts as the server, the Batch Server, for objects that maintain the queue
of jobs as well as the job objects themselves. In addition, utility programs which act as clients of
these objects are used by users to submit and monitor their job. Furthermore, the Machine Server
acts as a client of the Batch Server when it announces itself to the system and when in obtains
information about jobs to run. The Batch Server acts as a client of the Machine Server when it
obtains information about the resources available on that machine. In the CORBA approach, the
specifications of related object interfaces are grouped together in a module.

The objects provided by the Machine Server have all of their interfaces specified in the
Machine module which consists of the Info, Spawner, and Machine classes. Objects of the Info
type provide information about a machine’s resources, such as the number of processors and the
amount of memory. Objects of type Spawner create and monitor batch jobs. Each Machine
Server has one object of type Machine, which is responsible for registering the machine with the
Batch Server and creating Spawner objects.

The interfaces for objects provided by the Batch Server are specified in the Batch module,
which consists of the Job, SimpleJob, Resource, and Batch classes. The Job class is an abstract
base class for batch jobs. SimpleJob is a specialization of this class for batch jobs that simply run
a command specified by the user. Objects of class Resource are used to keep track of the
resources used by a particular user of the batch system. The Batch Server has one object of type
Batch that maintains the queue of jobs, schedules jobs, and provides information about the batch
system to users.

The initial implementation of the machine and batch servers were in C++. However, the
CORBA/C++ software available on Linux, at that time, was unstable. Thus we rewrote the
servers in the interpreted language Python. All along the graphic user interface, which acted as a
client to both the Batch Server and Machine Server, was written in Python.

As the development continued difficulties with the CORBA software available for Linux
were revealed. All of the CORBA implementations for Linux were single-threaded and supported

41

no means to provide mutually exclusive access to certain regions of code. Unfortunately, in a
distributed system such as this, where multiple users may be simultaneous clients of the Batch
Server, there are really multiple threads of control.

The problems arise when a server acts as a client of another job, for example, when the
Batch Server creates an object to spawn a job on another machine using its machine server.
While the Batch Server is waiting for a reply from the Machine Server it must continue processing
requests. For example, the machine server will need to obtain the job and its characteristics from
the Batch Server while it is creating the process. However, suppose a user requests that the job
be canceled while the job is being started. The batch object’s data structure can be placed in an
inconsistent state resulting in an eventual failure. The preferred solution is to use mutual
exclusion locks to protect sensitive areas of code. Since these locks were not available to us, we
pursued the alternative of carefully coding the application so that methods of remote objects will
not be invoked during critical sections of code. Unfortunately, this defeats somewhat the purpose
of an object-oriented approach, since knowledge of the details of each object’s implementation is
needed to write correct code to use it.

4.2 DISTRIBUTED QUEUING SYSTEM

The Distributed Queuing System (DQS) is a publicly available batch queuing system related to the
widely used Network Queuing System (NQS). It is a complete rewrite of NQS and provides the
additional capability of being able to run parallel jobs across some or all of the nodes in a cluster
of machines.

Although some bugs have arisen in DQS on our system, after applying our fixes DQS
seems exceptionally stable. Furthermore, the DQS development team has been quite responsive
in applying our fixes to their code so that the bugs will not affect us in future releases.

The main problem with DQS is its simplistic scheduling system for parallel jobs. When a
parallel job is at the top of the queue it can only run if the minimum number of processors it
requests are available. Otherwise, the next job will be considered and so on. If one of these jobs
only requires as many processors as are available, then it will be run. Thus, the parallel job may
be prevented from running indefinitely. We plan to monitor the performance of DQS to
determine if and how the scheduling algorithm needs to be rewritten.

42

5 CONCLUSIONS

The IDES project at the Sandia National Laboratories developed a simulation environment for
large-scale, fine-grained problems. IDES goals included portability over various architecture
types. Focusing on the Breathing Time Buckets synchronization protocol, we have developed a
simple model of performance; the purely analytic model is expressed in terms of state transition
equations that can be solved efficiently, numerically. Performance reported is based on a discrete-
event simulation of the model. We have developed a new algorithm— the preemptive min-
reduction— for quickly detecting the end of the BTB synchronization window. We have
considered an alternative strategy for managing communication— to pre-send all messages and
have the receiver filter out the risk-free ones once the window edge is known. We have looked at
the sensitivity of performance to key parameters such as problem size and communication delay,
and have confirmed that our alternate communication strategy can provide significant
performance gains. For the scale of problems and architectures anticipated for IDES, we see that
good performance will likely be achieved.

IDES provides an object-oriented foundation for simulation that is applicable to all of
Sandia’s simulation projects, for example, (1) enterprise modeling— stockpile maintenance, (2)
quantum chemistry codes— materials aging, and (3) systems studies— gamma-ray transport. The
availability of this software system will increase the scale at which a large class of real-world
systems can be modeled. In addition, IDES protects the investment in the construction of such
models by providing, (1) a standardized API with which to quickly model complex systems; (2)
immediate performance gains through parallel simulation without involving the system’s user; and
(3) a portable means of developing system simulation software, eliminating the user’s dependence
on a single hardware platform. IDES addresses Sandia’s need for a robust, portable, scaleable
simulation system which will span more than a single project, and which can be utilized
throughout the company.

43

REFERENCES

R. Bagrodia, W. Liao, 1994. Maisie: A Language for the Design of Efficient Discrete-Event
Simulations. In IEEE Transactions on Software Engineering, Vol. 20, No. 4, 225-238,
April, 1994.

K. Chandy, R. Sherman, 1989. The Conditional Event Approach to Distributed Simulation. SCS
Multiconference on Distributed Simulation, The Society for Computer Simulation.

R. Felderman and L. Kleinrock, 1991. Bounds and approximations for self-initiating distributed
simulation without lookhead. ACM Transactions on Modeling and Computer Simulation,
1(4), October 1991.

A. Ferscha, 1995. Probabilistic adaptive direct optimism control in time warp. In Proceedings of
the 1995 Workshop on Parallel and Distributed Simulation, pages 120-129, Lake Placid,
NY. The Society of Computer Simulation.

S. Franks, F. Gomes, B. Unger, and J. Cleary, 1997. State saving for interactive optimistic
simulation. In Proceedings of the 11th Workshop on Parallel and Distributed Simulation,
72-79. IEEE Computer Society Press.

M. Gupta, A. Kumar, and R. Shorey, 1996. Queueing models and stability of message flows in
distributed simulators. In Proceedings of the 1996 Workshop on Parallel and Distributed
Simulation, pages 162-169, Philadelphia, PA. The Society of Computer Simulation.

W.D. Hillis and Jr. G.L. Steele, 1986. Data parallel algorithms. Communications of the ACM,
29(12):1170-1183, December 1986.

D. Nicol, 1991. Performance bounds on parallel selfinitiating discrete-event simulations. ACM
Transactions on Modeling and Computer Simulation, 1(1):24-50, January 1991.

D. Nicol, 1992. Conservative parallel simulation of priority class queueing networks. IEEE
Transactions on Parallel and Distributed Systems, 3(3):294-303, May 1992.

D. Nicol, 1993. The cost of conservative synchronization in parallel discrete-event simulations.
Journal of the ACM, 40(2):304-333, April 1993.

D. Nicol, 1995. Non-committal barrier synchronization. Parallel Computing (21): 529-549.

D. Nicol, M. Johnson, A. Yoshimura, and M. Goldsby, 1997. Performance modeling of the
IDES framework. In Proceedings of the 11th Workshop on Parallel and Distributed
Simulation, 38-45. IEEE Computer Society Press.

D. Nicol, C. Michael, P. Inouye, 1989. Efficient aggregation of multiple LPs in distributed
memory parallel simulations. In Proceedings of the 1989 Winter Simulation Conference,
680-685.

M. Raynal, 1988. Distributed Algorithms and Protocols. John Wiley and Sons, New York.

J. Steinman, 1992. SPEEDES: A multiple synchronization environment for parallel discrete-event
simulation. In International Journal in Computer Simulation (2): 251-286.

44

J. Steinman, 1994. Discrete-event simulation and the event horizon. In Proceedings of the 1994
Workshop on Parallel and Distributed Simulation, pages 39-49, Edinburgh, Scotland. The
Society of Computer Simulation.

45

BIBLIOGRAPHY

Bagrodia, Rajive L., Chandy, K. Mani, and Misra, Jayadev, "A Message-Based Approach to
Discrete-Event Simulation", IEEE Transactions on Software Engineering, Vol. SE-13, No.
6, 654-665, June 1987.

Bershad, Brian N., “The PRESTO Users Manual”, University of Washington, October 1991.

Chandra, Rohit, Gupta, Anoop, and Hennessy, John L., “Integrating Concurrency and Data
Abstraction in the COOL Parallel Programming Language”, IEEE Computer, February 1994.

Edwards, G., and Sankar, R., "Modeling and Simulation of Networks Using CSIM", Simulation,
Vol. 58, No. 2, 131-136, February 1992.

Egdorf, H.W., and Painter, Steven W., “An Object-Oriented Methodology for Discrete-Event
Simulation Tasks: Requirements, Functional Specification, Design, Implementation”, Los
Alamos National Laboratory.

Engler, Dawson R., Andrews, Gregory R., and Lowenthal, David K., “Filaments: Efficient
Support for Fine-Grain Parallelism”, The University of Arizona, Tucson, Arizona.

Fisher, Joseph A., "Object Oriented Simulation Tools for Discrete-Continuous, Stochastic-
Deterministic Simulation Models", Oregon State University, Master of Science Thesis,
August 24, 1992.

Fishwick, Paul A., “SimPack: Getting Started with Simulation Programming in C and C++”,
University of Florida, Department of Computer & Information Science.

Freeh, Vincent W., Lowenthal, David K., and Andrews, Gregory R., “Distributed Filaments:
Efficient Fine-Grain Parallelism on a Cluster of Workstations”, Proceedings of the First
Symposium on Operating Systems Design and Implementation, Usenix Association,
November 1994.

Fujimoto, Richard M., "Parallel Discrete Event Simulation", Communications of the ACM, Vol.
33, No. 10, 30-53, October 1990.

Fujimoto, Richard M., Tsai, Jya-Jang, and Gopalakrishnan, Ganesh C., "Design and Evaluation of
the Rollback Chip: Special Purpose Hardware for Time Warp", IEEE Transactions on
Computers, Vol. 41, No. 1, 68-82, January 1992.

Grunwald, Dirk, "A Users Guide to AWESIME: An Object Oriented Parallel Programming and
Simulation System", Technical Report CU-CS-552-91, Dept. of Computer Science,
University of Colorado, November 1991.

Heidelberger, Philip, and Nicol, David, “Conservative Parallel Simulation of Continuous Time
Markov Chains Using Uniformization”, IEEE Transactions on Parallel and Distributed
Systems, Vol. 41, No. 8, August 1993.

Keppel, David, “Tools and Techniques for Building Fast Portable Threads Packages”, University
of Washington, Technical Report UWCSE 93-05-06.

Little, M. C., and McCue, D. L., "Construction and Use of a Simulation Package in C++",
technical report, Dept. of Computing Science, University of Newcastle upon Tyne.

46

Lubachevsky, Boris D., "Efficient Distributed Event-Driven Simulations of Multiple-Loop
Networks", Communications of the ACM, Vol. 32, No. 1, 111-123, January 1989.

Misra, Jayadev, "Distributed Discrete-Event Simulation", Computing Surveys, Vol. 18, No. 1, 39-
65, March 1986.

Nicol, David M., "Problem Characteristics and Parallel Discrete Event Simulation", Book Chapter
1, Dept. of Computer Science, College of William and Mary.

Nicol, David M., Fujimoto, Richard M., “Parallel Simulation Today”, College of William & Mary,
Department of Computer Science, Georgia Institute of Technology, College of Computing,
Annals of Operations Research, Vol. 53, 249-285, 1994.

Nicol, David, and Heidelberger, Philip, "On Extending Parallelism to Serial Simulators", technical
report, Dept. of Computer Science, The College of William and Mary, November 28, 1994.

Nicol, David M., and Mao, Weizhen, "Automated Parallelization of Timed Petri-Net
Simulations", technical report, Dept. of Computer Science, The College of William and
Mary.

Reynolds, Paul F., Jr., "A Spectrum of Options for Parallel Simulation", Proceedings of the 1988
Winter Simulation Conference, M. Abrams, P. Haigh and J. Comfort (eds.), 325-332, 1988.

Reynolds, Paul F., Jr., Pancerella, Carmen M., and Srinivasan, Sudhir, "Design and Performance
Analysis of Hardware Support for Parallel Simulations", technical report, Dept. of Computer
Science, School of Engineering and Applied Science, University of Virginia.

Righter, Rhonda, and Walrand, Jean C., "Distributed Simulation of Discrete Event Systems",
Proceedings of the IEEE, Vol. 77, No. 1, 99-113, January 1989.

Rogers, Ralph V., "Synchronization of Autonomous Objects in Discrete Event Simulation",
Washington, DC : National Aeronautics and Space Administration; Springfield, Va. :
National Technical Information Service, distributor, 1991].

Rothenberg, Jeff, "Object-Oriented Simulation: Where Do We Go from Here?", Santa Monica,
Ca. : Rand Corp., 1989.

Schmidt, Douglas C., “The Adaptive Communication Environment, Object-Oriented Network
Programming Components for Developing Distributed Applications”, University of
California, Irvine, Department of Information and Computer Science.

Schwetman, Herb, “CSIM17: A Simulation Model-Building Toolkit”, Mesquite Software, Inc.

Srinivasan, Sudhir, and Reynolds, Paul F., Jr., "On Critical Path Analysis of Parallel Discrete
Event Simulations", Computer Science Report No. TR-93-29, Dept. of Computer
Science, School of Engineering and Applied Science, May 25, 1993.

Still, Charles H., “Portable parallel computing via the MPI1 message-passing standard”,
Computers in Physics, 8(5):533-539, Sep./Oct. 1994.

Sunderam, V. S., and Rego, Vernon J., "EcliPSe: A System for High Performance Concurrent
Simulation", Software— Practice and Experience, Vol. 21, No. 11, 1189-1219, November
1991.

47

Wonnacott, Paul, and Bruce, David, "The Design of Apostle— A High-Level, Object-Oriented
Language for Parallel and Distributed Discrete Event Simulation", Defense Research
Agency, Malvern, Worcestershire, United Kingdom, 1995.

48

APPENDIX A: PDES SYSTEM DESIGN ISSUES

In developing IDES we investigated a number of parallel, discrete-event simulation system level
design issues and their relation to anticipated problems IDES would be used to solve. The
following sections detail those issues.

A.1 AN OBJECT ORIENTED MODEL FOR PARALLEL PROGRAMMING

A convenient and much-used model for parallel programming pictures the parallel program as a
collection of processes which send messages to each other. It is possible to put any such process
into a normal form in which the process's code is broken into sections that are triggered by the
receipt of external messages and that execute to completion.

Implementing a program in such a form has certain advantages. Since each section of the
code executes to completion (after which the process waits for another external message), there is
no need for the process to have its own stack. All the state that must be preserved for the process
is contained in the process's explicit local variables. For this reason, memory usage and context-
switching overhead can be lower than with a standard implementation of processes or threads in
which each has its own stack.

Such an implementation maps directly onto an object-oriented model in which the external
messages correspond to method invocations. In order to give the model the generality it needs to
express any parallel program, it is necessary to allow the object to disable its own methods
selectively. When a method is disabled, messages corresponding to it are queued rather than
consumed. Note that Bagrodia's COMPOSE system, which asks the user to write according to
the OO model in the first place, sacrifices no generality by doing so. COMPOSE associates each
method with a boolean guard that disables the method when it is false. COMPOSE is specialized
for PDES, since it delivers messages in timestamp order.

The implementation can be made with a single thread of control on each node of the
parallel system (so there is no context-switching per se). Let the thread run a "daemon" that
invokes the methods of the objects that implement (or have the same effect as) the processes of
the parallel program. The daemon also acts as a message router. A message sent by an object
goes first to the daemon on the node on which the object is running. If the message is for another
object on that node, the daemon enqueues it and later passes it to the receiving object by invoking
one of its methods. If the message is for an object on another node, the daemon forwards the
message to that node, where the local daemon enqueues it and eventually passes it to the object.

In order to be able to write a daemon which can run any application and does not have to
know all the details about the methods offered by a particular set of application objects, we
specify that all objects have a method

void receiveMessage (Message&);

which is never disabled, where Message is the base class for all the different messages the
processes can send. An object's receiveMessage method analyzes the received message and calls
a private method of the object in order to process it. It is these private methods which must be
capable of being disabled. When such a method is disabled, a message for it is queued rather than
processed; if the method is later reenabled, the queued messages are processed.

49

Let the daemon itself appear as an object with a method

void sendMessage (Message&);

which is accessible by all the application objects on the node and is used to send messages to
other objects. (An object may also have its own private message-sending methods that require
that the argument be of some specific class derived from Message and that call sendMessage.)

While the above technique for sending and receiving messages makes the daemon
application-independent, it may not be very convenient for the writer of the application classes,
because s/he has to include logic to test the message type and call the proper method for the type.
It is possible to give the daemon sufficient information to enable it to choose the proper method
to invoke for each received message and still leave it application-independent. Two different
ways of doing so are described briefly below.

The first way is for an object representing the receiving entity to be accessible to the
sender. The entity’s class can be given two different constructors, one for the “real thing” (the
message receiver) and another for the sender’s representative. The object implements methods

void sendMessage (const ParticularMessageType&);
void receiveMessage (ParticularMessageType&);

for each particular message type it accepts. The sender invokes a method of the first form, which
puts into the message an index into a method table maintained by the receiving version of the
entity. The daemon on the receiving node uses the index to select and invoke the proper method
of the second form. In addition to having access to an object of the proper type, the sender would
have to have the receiving entity’s global identifier, a quantity passed to it at run time. Two
approaches could be taken: there could either be one sender’s object for each receiving object, or
one sender’s object for each class of receiving objects. In the first approach, the receiver’s
identifier would be contained in the object, and in the second approach, the sender would supply
the receiver’s identifier whenever it sent a messages. If the second approach is taken, the above
sendMessage operation would be changed to

void sendMessage (EntityID, const ParticularMessageType&);

The second way is to use an intermediate structure as message destination and source.
Such structures are commonly called ports or channels. Suppose a sending entity sends to a port
rather than to another entity, and a receiving entity receives from a port. Ports would have their
own global identifiers which would be used in place of entity identifiers. One might use one port
for each message type accepted by an entity. The port would reside on the same node as the
receiving entity, and the receiving entity would register its ports with the daemon on its node,
providing as part of the registration a pointer to itself and to a method to be called when a
message directed to the port arrives. To provide type safety for the sender, the sender could use
an object representing the port. Thus a port would have methods

void sendMessage (const ParticularMessageType&);
void receiveMessage (ParticularMessageType&);

50

The sender would invoke the first, and the daemon on the receiver’s node would invoke the
second. The similarity to first method is evident.

Note that neither of the above methods requires any special preprocessor or compiler but
could be programmed in plain C++. The claim of no special compilers or preprocessors is also
made for the COMPOSE system. The Charm and Charm++ systems bear a resemblance to the
system proposed here but require a special preprocessor and do not implement guarded methods.
The authors of the COMPOSE system have chosen another way of implementing inter-entity
communication. In their scheme, typed messages are sent to entities (objects), as in the first
technique outlined above. However, the class of the receiving object is not known to the sender.
That appears to imply that before a sender and receiver can communicate, a preliminary internode
communication must be done, similar to the binding of a client to a server, to enable the sender to
obtain some sort of method identifier to put in its messages to the receiver. In addition to
requiring further logic, this scheme could cause significant overhead for certain classes of
programs (e.g., those in which this binding interaction cannot be amortized over a large number of
communications with the same entity).

The model described here will work for any parallel program that can be stated as a
collection of processes that send messages to each other. Selectively disabling of methods can
conveniently be implemented by means of guard functions that return boolean values. A guard
function callable by the daemon can be associated with each message-processing method.
(Omitting a guard is equivalent to providing a guard that always returns a true value.) The same
selector used to locate the correct method for the message can be used to locate the correct guard
function for the message. If the guard returns a false value, the daemon retains the message rather
than passing it to the entity by invoking its message-processing method. Every time a method of
the entity is invoked it could change the output of any of the guard functions, so the daemon
persists in passing messages to the entity until they are exhausted or until the guards for all the
messages present have returned a false value. After that, the daemon will not trouble the entity
again until a new messages for it arrives.

Several different policies could be used by the daemon in delivering messages (these
correspond to queuing policies in a system of processes with message queues). The simplest is
just to deliver the messages in arrival order. Another option is to give different priorities to
different objects, to different message types or to individual messages. (Higher-priority objects
receive their messages before lower-priority objects, messages of higher-priority message types
are delivered before messages of lower-priority types, and higher-priority messages are delivered
before lower-priority messages.) Such priorities are especially useful in real-time applications,
where it may be necessary to process certain messages as soon as they come in.

Some further measures are needed for real-time systems. In order to process a message as
soon as it comes in, preemptive priority scheduling is needed. Since the entities have no stacks of
their own, any interruption of their methods must use a system stack. To support preemptive
priority scheduling, a stack for each priority level is required. Then the daemon becomes
multithreaded, with one thread for each priority level.

In PDES, the messages must be delivered in timestamp order, which is easily done by
letting the timestamp be the message priority (a lower value having a higher priority).

Lack of stacks for the individual objects makes ordinary time-slicing infeasible, but
something equivalent to it can be provided if priorities are available. Without time-slicing, an
object could dominate its node with a long-running method; depending on the application, such

51

behavior could decrease the overall parallelism of the system. Then the application programmer
would have to observe the discipline of keeping the methods short enough that they do not
become bottlenecks in the information flow. However, an effect similar to time-slicing can be
obtained if a method’s (or object’s) priority is lowered dynamically as its running time increases.

It is possible to let objects invoke methods of other objects on the same node without
going through the daemon. If priorities are used, it would be necessary to disallow direct calls to
message-processing methods, though, because they would cause the priority ordering to be
violated. It may be simplest to disallow direct calls to message-processing objects (entities)
altogether. It would still be possible to use ordinary (non-message-processing) objects for all the
usual purposes.

52

A.2 WAYS OF IMPLEMENTING CONCURRENCY

There is a small palette of options to choose from in defining the executing entities used in
discrete-event simulation. There are two independent sets of two choices to be made: threads or
no threads; and proxies or ports.

If threads are used, the user can wait for events (messages or timeouts) anywhere in the
code. If threads are not used, receipt of a message (of a particular type) or a timeout is identified
with the invocation of a (particular) method. We will call the executing entities with threads
active entities and the executing entities without threads passive entities. Without threads, more
entities can be packed on a node, and it is easier to move an entity to another node; the cost of
having no threads is constraint to a "callback" style of programming.

An important difference between the two models has to do with program decomposition.
In the active model, the entity can call a subroutine that receives messages and may eventually
return results. In the passive model, the entity must create another entity to receive those
messages, and any results must be passed back via messages. (In both models, entities may call
ordinary subroutines that receive no messages but may return results.) A discussion of program
decomposition will follow.

We wish to avoid having to use any special preprocessor or translator in defining a
simulation language. In addition, we would like to avoid performing an explicit client/server-style
binding between message sender and message receiver before sending the first message from that
sender to that receiver. (It requires more logic and hurts performance, particularly when entity
lifetimes are short, as they would often be with delegation.) The sender, however, must include
something in the message that allows the receiver to tell what message type it is. Two ways of
doing this are proxies and ports.

First proxies: let each entity type be associated with two classes, one a "sender's version"
and the other a "receiver's version". One object of the receiving class is created, and it is the "real
thing". Any number of objects of the sending class may be created; they are mere shells or
proxies. However, a proxy does contain the information needed to properly tag all messages so
that the receiving node can identify them. (We assume that the sender learns the entity ID of the
receiver at run time.)

Now ports: ports are objects whose whole purpose is to receive messages. They are first-
class entities in the sense that they have global identifiers. Ports are properly owned by and reside
with the entity that receives from them. Global entity IDs are not used, only global port IDs. The
sender learns port IDs at run time, just as it would learn entity IDs in the proxy scheme, and sends
a message to a particular port. A special requirement of PDES is that entities consume incoming
messages in timestamp order. This is equivalent to implementing message priorities, where the
lower timestamp is the higher priority.

The next question to address is what the four options might look like to the programmer.
To answer it, consider an example entity in each of the four styles. We use a Maisie entity used as
an example in a paper by Bagrodia (1994). In Maisie, the entity looks like:

entity server {mean}
 int mean;
{ message job {int dep;} j1;
 message idmsg { ename id; }
 ename nextid;
 wait until mtype(idmsg) nextid = msg.idmsg.id;

53

 for (;;)
 wait until mtype (job)
 { j1 = msg.job;
 hold (expon(mean));
 invoke nextid with job = j1;
 }
}

Figure A.1: An example Maisie entity.

In the examples below, note that a global identifier consists of two parts, a node number and a
unique id number on that node. We assume that entities do not migrate from one node to
another.

A.2.1 ACTIVE ENTITIES USING PORTS

In the active model with ports, both the sender's node and the receiver's node have an object
representing a given port (i.e., both have the same global identifier for the port). The node
number in the port's global identifier is that of the receiver's node (the receiver "owns" the port).
The sender (an active entity) sends a message to the receiver by invoking the port's send
operation. The port's send operation calls upon the daemon on the sender's node to deliver the
message. The daemon knows about all ports with receivers on its node (the receiver registers
them with the daemon). The daemon on the sender's node derives the receiver's node from the
port's global identifier and sends the message to that node, tagged with the port's unique id
number on that node (also derived from its global identifier). The daemon on the receiving node
delivers the message to the port by invoking the port's send operation. The message is enqueued
in the port until the receiver (an active entity) asks for it by invoking the port's receive operation.
The usual techniques of mutual exclusion are used to keep the receiver and the daemon from
interfering with one another.

In general, an entity wants to receive a message from any one of some subset of its ports.
Of those ports in the subset that have messages ready, the entity must choose the message with
the highest priority. The entity can handle this for itself without involving the daemon, provided
the port makes its priority accessible (its priority is the priority of the highest-priority message
enqueued in the port). It is convenient to encapsulate the logic to perform these functions in
methods that are part of every entity. The _request operation allows the entity to record the ports
it can receive input from; if none of the ports is ready, the _wait operation calls the daemon's Wait
function, which returns when there is a message in at least one of the requested ports. The
daemon knows which entity to awaken because the entities register their ports with it. The _wait
operation selects from the input ports the one with the highest-priority message and returns its id.
The returned id is not used in the example below because the entity receives from only one port at
a time. In a windowed PDES protocol, the daemon would enqueue all the window's messages
before beginning to schedule the execution of the entities. The following is an example of an
active entity using ports.

class GlobalId {
 public:
 int node;
 int number; // unique on node

54

 GlobalId (int,int);
 GlobalId (void);
};
typedef int EntityId; // unique on this node
class BasePort {
 public:
 BasePort (GlobalId id, EntityId owner);
 BasePort (EntityId owner);
 BasePort (GlobalId id);
 BasePort (void);
 void _register (EntityId owner); // so daemon knows whom to awaken
 Boolean ready (void); // true if message enqueued
 double priority (void); // e.g., timestamp
 GlobalId id (void);
 EntityId owner (void);
 protected:
 GlobalId _id;
 private:
 EntityId _owner;
 };
template <class T>
class Port : public BasePort {
 public:
 Port (GlobalId portId, Entity owner);
 Port (EntityId owner);
 Port (GlobalId id);
 Port (void);
 void receive (T& msg); // gets highest-priority enqueued msg
 void send (const T& msg); // transmit or enqueue message
 private:
...
};
class BaseMessage {
 public:
 GlobalId destination;
 double priority;
};
class JobMsg : public BaseMessage { ... };
class IdMsg : public BaseMessage {
 public:
 GlobalId id;
 EntityId owner;
};
class Entity {
 public:
 Entity (EntityId id);
 protected:
 void _request (const BasePort&); // add to input ports
 GlobalId _wait (void); // wait for msg on input port
 EntityId _id;
...
};
class Server : public Entity {
 Server (EntityId id, int mean,
 Port<IdMsg>& idPort, Port<JobMsg>& jobPort) :
 Entity(id), _mean(mean), _idPort(idPort), _jobPort(jobPort)
 {
 idPort._register(id);
 jobPort._register(id);
 CreateThread (Server::_body);

55

 }
 private:
 int _mean;
 Port<IdMsg> _idPort;
 Port<JobMsg> _jobPort;
 GlobalId readyPort;

 void _body (void) {
 IdMsg next;
 JobMsg job;
 _request (_idPort); // accept input from _ idPort
 readyPort = _wait(); // wait for input
 _idPort.receive(next); // retrieve message
 // use msg contents to create port
 Port<JobMsg> nextPort(next.id, next.owner);
 for (;;) {
 _request (_jobPort);
 readyPort = _wait();
 _jobPort.receive(job);
 Hold (expon(mean));
 nextPort.send(job); // send message to nextPort
 }
 }
};

Figure A.2: An active entity using ports.

A.2.2 PASSIVE ENTITIES USING PORTS

In the passive model with ports, it is also true that both the sender's node and the receiver's node
have an object representing a given port and that the node number in the port's global identifier is
that of the receiver's node. The sender sends a message to the receiver by invoking the port's
send operation. The port's send operation calls on the daemon on the sender's node to deliver the
message. As in the active model, the sender's daemon derives the receiver's node from the port's
global identifier and sends the message to that node, tagged with the port's id number on that
node. The receiver has prepared the port by calling its callback operation, telling it which method
to call when a message arrives. However, before calling the port's send method, the daemon on
the receiving node first calls the ports's guard method. If the guard returns a false value, the
daemon retains the message and attempts to deliver it again after the entity has received some
other message. When the daemon on the receiving node does call the port's send method, the
port logic invokes the specified callback method to deliver the message to the entity.

When message priorities are used, the daemon must deliver to the entity the highest-
priority message that has a true guard. The daemon can do this by starting with its highest-prioity
message and working down. If we wish to allow the daemon to give each entity all its messages
before moving on to the next entity, the entities must register the ports with the daemon as in the
active model; we will assume that the callback operation takes care of the registration. The
following is an example of a passive entity using ports.

typedef int Boolean;
typedef int EntityId;
class Entity {
 public:

56

 Entity (EntityId id);
 EntityId id (void);
 protected:
 EntityId _id;
...
};
class BaseMessage {
 public:
 GlobalId destination;
 double timestamp;
};
typedef Boolean (Entity::*Guard)(BaseMessage& msg);
template <class T>
class Port {
 public:
 Port (GlobalId id, EntityId owner);
 Port (EntityId owner);
 Port (GlobalId id);
 Port (void);
 void send (const T& msg);
 void callback (Entity *obj, void (Entity::*method)(T& msg),
 Guard guard);
 Boolean guard (void);
private:
 GlobalId _id;
 EntityId _owner;
 ...
};
class JobMsg : public BaseMessage { ... };
class IdMsg : public BaseMessage {
 public:
 GlobalId id;
};
class Server : public Entity {
 public:
 Server (EntityId id, int mean, Port<IdMsg>& idPort,
 Port<JobMsg>& jobPort, Port<BaseMessage>& timerPort) :
 Entity(id), _mean(mean), _idPort(idPort), _jobPort(jobPort),
 _timerPort(timerPort), _nextPort(NULL), _processingJob(FALSE)
 {
 _idPort.callback ((Entity *)this,
 (void (Entity::*)(IdMsg&))Server::_receiveId,
 (Guard) Server::_idGuard);
 _jobPort.callback ((Entity *)this,
 (void (Entity::*)(JobMsg&))Server::_receiveJob,
 (Guard)Server::_jobGuard);
 _timerPort.callback ((Entity *)this,
 (void (Entity::*)(BaseMessage&))Server::_receiveTimeout,
 (Guard)Server::_timeoutGuard);
 }
 private:
 int _mean;
 Port<BaseMessage> _timerPort;
 Port<IdMsg> _idPort;
 Port<JobMsg> _jobPort, *_nextPort;
 JobMsg _job;
 Boolean _processingJob;

 void _receiveId (IdMsg& msg) {
 _nextPort = new Port<JobMsg>(msg.id); }

57

 Boolean _idGuard (void) { return (_nextPort == NULL); }
 void _receiveJob (JobMsg& job) {
 _processingJob = TRUE;
 _job = job;
 Timer (expon(mean)); // requests timeout call
 }
 Boolean _jobGuard (void) {
 return (_nextPort != NULL && !_processingJob);
 }
 void _receiveTimeout (BaseMessage& ignored) {
 _processingJob = FALSE;
 _nextPort.send (_job);
 }
 Boolean _timeoutGuard (void) { return (_processingJob); }
};

Figure A.3: Passive entity using ports.

A.2.3 ACTIVE ENTITIES USING PROXIES

In the active model with proxies, the sender (an active entity) has access to a proxy object for the
receiver. Every entity has a unique global identifier, and the receiving entity's global identifier is
known to the proxy. The sender invokes the sendMessage in the proxy to send the message. The
sendMessage operation corresponding to the type of message sent is automatically selected. The
proxy passes the message to the sending node's daemon, tagged with the entity id and the type
number corresponding to the message type, and the daemon transmits the message to the
receiving node. A daemon is assumed to know about all entities on its node. The daemon on the
receiving node enqueues the message and delivers it to the receiving entity when that entity
requests it.

When message priorities are used, the entity must receive the highest-priority message that
is ready among those message types in which it is currently interested. Since the daemon must
choose the message to deliver, the daemon must know which types are candidates for the entity.
The entity registers its interests with the daemon with the Request operation and then waits for
arrival of a message with the Wait operation, which returns the type of the ready message. (In the
example below, only one message type is wanted at a time, so the returned message type is not
used.) The entity may then retrieve the message with the ReceiveMessage operation. The
following is an example of an active entity using proxies.

class Entity {
 protected:
 GlobalId _id;
 Entity (GlobalId id) : _id(id) {
 Register(this, id); // let daemon know about this entity
 }
};
class BaseMessage {
 public:
 GlobalId destination;
 double timestamp;
};
class JobMsg : public BaseMessage { ... };
class IdMsg : public BaseMessage {

58

 public:
 GlobalId id;
};
class ServerProxy {
 public:
 ServerProxy (GlobalId);
 void sendMessage (const IdMsg&);
 void sendMessage (const JobMsg&);
 void sendMessage (const BaseMessage&);
};
class Server : public Entity {
 public:
 Server (GlobalId id, int mean) :
 Entity(id), _mean(mean),
 _processingJob(FALSE), _nextServer(NULL) { }
 private:
 int _mean;
 JobMsg _job;
 Boolean _processingJob;
 ServerProxy *_nextServer;
 void _body (void) {
 IdMsg msg;
 JobMsg job;
 int messageType;

 Request(_id,0); // request type 0 message
 messageType = Wait(); // wait for msg of that type
 ReceiveMessage(_id,0,msg); // and retrieve it
 _nextServer = new ServerProxy(msg.id);
 for (;;) {
 Request(_id,1);
 messageType = Wait();
 ReceiveMessage (_id, 1, job);
 Timer(expon(mean), 2); // request timeout message
 Request(id,2);
 messageType = Wait();
 ReceiveMessage (_id, 2, NULL);
 _nextServer->sendMessage(job);
 }
 }

Figure A.4: Active entity using proxies.

A.2.4 PASSIVE ENTITIES USING PROXIES

As in the active model with proxies, it is true that the sender has access to a proxy object for the
receiver, that each entity has a unique global identifier, and that the receiving entity's global
identifier is known to the proxy. As in the active case, the sender invokes the proxy's
sendMessage method to send a message to the receiver, and the sendMessage operation
corresponding to the message type is automatically selected. The proxy passes the message to the
sending node's daemon, tagged with the entity id and the type number corresponding to the
message type, and the daemon transmits it to the receiving node. The daemon on the receiving
node locates the receiving entity, using the global identifier in the message, and delivers the
message by invoking the method corresponding to the message type in the message (the message
type is the index of the method in the entity's method table). But before invoking the delivery
method, the daemon invokes the guard indicated by the index; if the guard returns a false value,

59

the daemon retains the message and does not try to deliver it again until after some other message
has been successfully delivered to the entity.

If message priorities are used, it is necessary for the daemon to deliver the highest-priority
message of those that the entity might receive. With proxies, the messages contain the entity id,
so it is a simple matter for the daemon to select the highest-priority one to deliver. The following
is an example of a passive entity using proxies.

class Entity {
 protected:
 GlobalId _id;
 Entity (GlobalId id) : _id(id) {
 Register(this, id); // let daemon know about this entity
 }
};
class BaseMessage {
 public:
 GlobalId destination;
 double timestamp;
 int type;
};
typedef void (Entity::*Method)(BaseMessage& msg);
typedef Boolean (Entity::*Guard)(void);
class JobMsg : public BaseMessage {
 public:
 GlobalId destination;
 double timestamp;
};
class IdMsg : public BaseMessage {
 public:
 GlobalId id;
};
class ServerProxy {
 public:
 ServerProxy (GlobalId);
 void sendMessage (const IdMsg&);
 void sendMessage (const JobMsg&);
 void sendMessage (const BaseMessage&);
};
class Server : public Entity # 1 {
 public:
 Server (GlobalId id, int mean) :
 Entity(id), _mean(mean), _processingJob(FALSE), _nextServer(NULL)
 {
 method[0] = (Method)Server::_receiveId;
 guard[0] = (Guard) Server::_idGuard;
 method[1] = (Method)Server::_receiveJob;
 guard[1] = (Guard) Server::_jobGuard;
 method[2] = (Method)Server::_receiveTimeout;
 guard[2] = (Guard) Server::_timeoutGuard;
 }
 Method method [3];
 Guard guard [3];
 private:
 int _mean;
 JobMsg _job;
 Boolean _processingJob;
 ServerProxy *_nextServer;

60

 void _receiveId (IdMsg& msg) {
 _nextServer = new ServerProxy (msg.id);
 }
 Boolean _idGuard (void) { return (_nextServer == NULL); }
 void _receiveJob (JobMsg& job) {
 _processingJob = TRUE;
 _job = job;
 Timer (expon(mean)); // requests timeout call
 }
 Boolean _jobGuard (void) {
 return (_nextServer != NULL && !_processingJob);
 }
 void _receiveTimeout (BaseMessage&) {
 _processingJob = FALSE;
 _nextServer.sendMessage (_job);
 }
 Boolean _timeoutGuard (void) {
 return (_processingJob);
 }
};

Figure A.5: Passive entity using proxies.

A.2.5 PROGRAM DECOMPOSITION

Program decomposition is fundamental to software development. It is the means of breaking a
complex entity up into simpler pieces. Decomposition can be sequential or parallel. Sequential
decomposition just amounts to calling a subroutine. Parallel decomposition is accomplished by
creating entities. The possible combinations of active/passive, ports/proxies, and
sequential/parallel generate eight cases, which are discussed separately below.

1) Active/Ports/Sequential: The entity can pass ports as arguments to a subroutine,
which can use them without any special measures.

2) Active/Ports/Parallel: The entity can pass ports to an entity it creates, either as
arguments to its constructor or in messages. The created entity must register the
ports to itself, so the daemon will know what process to schedule when a message
arrives. The creator must register the ports back to itself when the created entity
terminates.

3) Active/Proxies/Sequential: A called subroutine can receive messages from the
daemon as well as the caller; the entity's id remains the same.

4) Active/Proxies/Parallel: The sender sends to a specific entity id (via the proxy),
and the entity id of a created entity is different from that of the creator. Therefore
the creator entity must ask its daemon to redirect messages sent to its id instead to
the created entity's id. Before it terminates, the created entity must first redirect
messages back to the parent. The redirection should be done by message type, so
that the creator can pass the responsibility for different types to different created
entities.

61

5) Passive/Ports/Sequential: Something akin to sequential decomposition can be
obtained by setting a port's callback method to point to a different routine.

6) Passive/Ports/Parallel: The parent entity can create a child entity and pass it ports
via constructor arguments or in a message. The child then sets the callbacks.
Before it terminates, the child informs the parent in a message that it is passing the
ports back. The parent then sets the callbacks back to its own methods.

7) Passive/Proxies/Sequential: Same as 5).

8) Passive/Proxies/Parallel: After it creates the child, the creator entity must ask its
daemon to redirect messages to it. The created entity must direct them back to its
creator before it terminates. The redirection should be done by message type, so
that the creator can pass the responsibility for different types to different created
entities.

62

A.3 AN INTERPRETATION OF CHANDY-SHERMAN SPACE-TIME SIMULATION

A completely new way of looking at discrete-event simulation was presented in the brief paper
"Space-Time and Simulation", by Chandy and Sherman (1989). Though the paper is sometimes
cited, I know of no simulation system that embodies the principles outlined in it. Perhaps the
reason is that the paper is not easy to understand. It is condensed, even delphic. This write-up
attempts to interpret the paper and carry it to a point at which a practical implementation of its
techniques can be made.

An analogy can be drawn between carrying out a parallel discrete-event simulation and
solving a boundary-value problem by the relaxation (successive approximation) method. In a
boundary-value problem, it is desired to compute values which satisfy a certain criterion (perhaps
they are a solution of a given equation) over a set of points, given information about the values on
part of the point set (the boundary).

A PDES simulates a set of physical processes. It is the object of the PDES to compute a
(correct) simulation-time history of the outputs of the physical processes from the starting
simulation time (0) to the simulation horizon (H), given certain assumptions about the initial states
of the physical processes. The PDES simulates the physical processes by using a set of logical
processes. In the simplest case, there is a one-to-one correspondence between physical and
logical processes. The outputs of the physical processes are deducible from the outputs of the
logical processes (in the simplest case identical to them).

Take the logical processes in the PDES to be analogous to the points in the boundary-
value problem. The values we wish to compute at these "points" are the complete (correct)
simulated time histories of the logical processes over the interval [0, H]. These histories consist
of a sequence of messages with timestamps in increasing simulation-time order. A partial
sequence can be considered to be an approximation of the desired value. Similarly, a (partial)
sequence in which the trailing messages are incorrect can be considered to be an approximation of
the desired value. (The individual messages are somewhat like the decimal digits of a numeric
value. As the simulation runs, the approximation of the desired value becomes better and better.)

Instead of making assumptions about the initial states of the physical processes, we can
specify the initial state in a PDES by means of a set of initializing messages sent to the logical
processes. The time-history of the sources of initial messages can be taken to be analogous to the
boundary values in the boundary-value problem. In general, the "physical process space" can be
covered by nonoverlapping regions in any fashion, with each region representing a logical process.
The covering can even change with time. The "points" are still taken to be the logical processes;
that is, the relaxation is carried out in "logical process space". From now on, when we say
"process", we will mean "logical process".

In the relaxation method, the current value at a point (the output at that point) is
computed using the past values at neighboring points as input. In a synchronous algorithm, a
point cannot perform the nth iterative computation of its value until all the neighbors from which it
inputs have performed their (n − 1)st iteration. (If a point requires up to k past values of its
neighbors in computing its current value, the algorithm is called "kth order in time".) In a chaotic
algorithm, the current value at a point may be computed at any time, using the currently available
values of its neighbors (the currently available k past values if the algorithm is kth order in time).

The situation is analogous in a PDES. A process computes its value in the form of its
output messages, which are used as input by other processes (its "neighbors") in order to compute

63

their values. The points may exchange information besides the current approximation of the final
value of interest; said another way, it is possible that only part of the output produced at each
point may be used in the final ("external") output of the program. Likewise, in a PDES, some
subset of the output messages may be sent outside the simulation to serve as the simulation's
"external output". An output message is either used as input by another process or is part of the
external output.

Let the simulated time variable be x and the real time variable be t. The principle of
causality says that the computation of an output message with timestamp x can depend only on
input messages with timestamps less than x. This corresponds to the fact that in a relaxation
algorithm, the current value is computed from the past values of the neighbors.

Consider a graph with a node representing each point (process) and a directed arc
connecting two points if the first point provides input for the second. If the graph is cyclic, we
say that there is "feedback" in the system. In general, non-trivial systems treated by DES have
feedback (an acyclic system could be treated with a systolic computation).

One result of considering discrete-event simulations in this fashion is that the distinction
between real-time and non-real-time simulation is removed. A (non-trivial) discrete-event
simulation corresponds to a (possible) real-time simulation of a system with feedback. In the real-
time simulation, the messages which are known to be correct are output as they are produced,
under the constraint that when they are output, the real time t must be within a certain tolerance
of the simulated time x. A time-stepped real-time simulation would correspond to a synchronous
relaxation algorithm. An asynchronous real-time algorithm would correspond to a chaotic
relaxation algorithm.

A.3.1 DESCRIPTION OF A CHAOTIC PDES ALGORITHM

Suppose the causality principle holds. Suppose each process continually goes through a cycle of
reading input values and consuming them to produce output values. For the purposes of this
section, suppose that at each cycle, the process outputs all its messages from time 0 on at each
cycle. For simplicity, suppose that simulated time is an integer variable.

At each cycle, let the process compare its output sequence for each of its message
destinations with the output sequence it developed for that destination on its previous cycle and
note the greatest simulated time through which the two sequences are the same. (If the first
differing message has timestamp x, the two sequences are the same through simulated time (x −
1).) Let the process tag its current output for that destination with this time.

Messages that have been output but not yet read and used to produce output are called
"outstanding" messages. We claim that the system has converged through the lowest tag time in
any outstanding message.

The claim follows from causality. Suppose a process's input on the current cycle is the
same up to simulated time x and different from that point on. Then any difference in the process's
output on this cycle from its output on the previous cycle must consist of messages with
timestamp greater than x. Let the minimum of the message tag times be xc. It follows from the
definition of the tag time that there is no outstanding message that can cause a process to produce
on its next cycle any output with timestamp less than xc that is different from what it produced on
the previous cycle. Therefore the system has converged through simulated time xc. As a
sidelight, note that if the physical system being simulated has the property that it consists of causal

64

physical processes, i.e., processes whose state at time t1 depends on their state at times t < t1 and
the external influences (messages) at times t < t1, it ought to be possible to construct a causal
simulation of the system.

A.3.2 CONSERVATIVE AND OPTIMISTIC SIMULATION

If the most recently computed convergence time xc is known to a process before it reads its inputs
for a cycle, it can regard all inputs having timestamps no greater than xc as being provably correct.
Any outputs produced using only these inputs are likewise provably correct. (Each process
handles its input messages in timestamp order. If the first input message that is not provably
correct has timestamp x, then the process can produce no provably correct output with timestamp
greater than x – 1.)

If a process produces only provably correct output, it is behaving conservatively. If it also
produces output that is not provably correct, it is behaving optimistically. A process may
alternate between conservative and optimistic behavior, behaving conservatively whenever it can
and optimistically whenever it would otherwise be idle. Suppose a process has read its input
messages for a cycle and used them to produce all the provably correct output it can. If at that
point its input for a new cycle has arrived, it can discard the remaining (unprocessed) input for
this cycle and begin the next cycle, having produced only provably correct output for this cycle.
If, on the other hand, it has no new input, it can behave optimistically and process the rest of its
input from this cycle to produce output that is not provably correct.

A.3.3 ANOTHER WAY OF LOOKING AT THE RELAXATION/PDES CORRESPONDENCE

To pursue another analogy, consider a relaxation algorithm that develops its output value as the
coefficients of a expansion in terms of some basis vectors. Suppose that the result is a vector
result, and that each process develops one component of this vector. The inputs to each process
are the approximate values of (some of) the other components.

The coefficients correspond to messages and the indices of the coefficients to the message
timestamps. (A process will not necessarily output a value for every index.) A conservative
PDES algorithm corresponds to an algorithm that outputs only coefficients that are known to be
correct. An optimistic PDES algorithm corresponds to an algorithm that outputs coefficients that
are only approximately correct.

Let the jth coefficient of the ith vector component be ci
j. Then the causality principle would

take the form: the value of a coefficient ci
j depends only on the coefficients {cm

n: m ≠ i, n < j }. If
we wish to obviate (conceptually, at least) the need for any process to remember its state, we
could say that ci

j depends only on {cm
n: n < j}. Then the initial state would be specified by giving

some initial coefficient values.

A.3.4 DISCOVERY OF THE CONVERGENCE TIME

Suppose each node (processor) on a parallel system runs its local logical processes using the
object-oriented model. In this model, each process corresponds to an object (or entity), and all
messages sent from one entity to another are routed through a daemon which runs on each
processing node of the computing system. Delivery of a message to an entity on the node

65

corresponds to invocation of one of the entity's methods by the daemon. Thus the daemon knows
whenever any input message is consumed by any entity on the node.

In order to compute the convergence time (call it xc), it is necessary to account for all
outstanding messages. If a message's source and destination are on the same node, the daemon
on that node will be able to account for the message. If the source and destination are on
different nodes, the message can be accounted for only after it has been received by the daemon at
the destination.

Each node's daemon can develop an estimate of xc as the minimum of the tag times in all
messages received but not yet consumed on the node. The daemons on all the nodes can from
time to time perform a reduction to discover the minimum of all the estimates. This minimum is
the new convergence (converged-to) time. A standard reduction algorithm is not adequate, since
it does not account for messages in transit. Nicol's noncommittal barrier algorithm (1995) is
suitable, however, since it delays completion of the reduction until all messages have been
accounted for.

Note that the scheme would also work if each node, instead of using the OO model, did a
sequential simulation using either the process model or the event-list model. In all these cases, a
controlling program on the node would be in a position to have the required knowledge about
messages sent, received and consumed.

A.3.5 HIGH-LEVEL STATEMENT OF AN IMPLEMENTATION OF THE ALGORITHM

In any implementation, the processes would not output their entire message sequences from time
0 at each cycle. It is only necessary for them to output the part of the sequence that is different
from the previous cycle's sequence. Likewise they would retain internal state so that they would
not have to compute the entire sequence anew at each cycle. They would, however, have to keep
two representations of that state, one "correct" state representation, which is advanced in
response to the advancement of the convergence time, and one state representation which is
developed in the course of producing output that is not provably correct (optimistic output).
Assume, for simplicity, that the current estimate of the convergence time is available to all
processes on a node in a global variable xc. Assume also that the node's daemon does not update
xc after a process has read its input messages but before the process has produced the output (if
any) it is going to produce in response to them.

do

 read all input messages now available to this process

 process input messages in timestamp order
 until run out of messages which are marked
 "proven" or which have timestamps no greater
 than xc, producing (but not yet sending) output
 messages marked "proven" and updating the state
 of this process.

 if no further unread input has become available —>

 make a copy of the state of this process and
 process the rest of the already-read input
 to produce (but not yet send) further output

66

 messages, updating the copy of the state.
 (this copy can then be discarded).

 fi

 for each destination represented in
 the output just produced or in the
 output produced on the previous cycle —>

 discover the greatest time through
 which the output produced on this
 cycle is the same as the output
 produced on the previous cycle

 rof
 tagtime := the least of the times developed above

 for each destination represented
 in the output just produced —>

 send the part of the output that has
 timestamps greater than tagtime
 and include tagtime in the messages

 rof

od

Figure A.6: A high-level statement of an implementation of the algorithm.

67

A.4 PARALLEL CONSERVATIVE SIMULATION TIMING DIAGRAMS

During the course of IDES research, a great deal of time was spent studying conservative
simulation protocols, and their timing nuances. The following diagrams highlight two of these
subtle aspects.

For each, the timing diagram legend in Figure A.7 applies. The horizontal axis represents
simulation time for each of the entities. Activities can be interruptible or non-interruptible. ∆Ta is
the minimum activity length of time. ∆Tc is the commitment time. If an interruptible activity with
a scheduled length of T reaches time T − ∆Tc, it can no longer be interrupted. Each entity offers
a window bid time. The entity guarantees it will not produce a message for another entity with a
time stamp less than its window bid, assuming it does not receive any new messages from other
entities.

Figure A.7: Timing diagram legend.

Figure A.8 demonstrates the issues associated with non-interruptible activities. The first
drawing is initial state. All entities are synchronized at time T0. Entity A has an unprocessed
message (received in an earlier window) which is to take place at time T1.
Minimum window bid is T1 + ∆Ta.

The second drawing shows state after processing each entity up to the window edge T1 +
∆Ta (synchronization point). During this window, Entity A processed its message at time T1,
learning that the activity is to last until T2 and that at that time (T2), a message should be
received by Entity B. As soon as this information was known, Entity A "pre-sent" the message to
Entity B. At the synchronization point, Entity B has an unprocessed message with time stamp T2,
so it calculates its window bid as T2 + ∆Ta. The minimum window bid is T2 + ∆Ta.

The final drawing shows state after processing each entity up to the window edge T2 +
∆Ta. During this window, Entity B processed its message at time T2, learning that the activity is
to last until T3 and that at that time (T3), a message should be received by Entity C. As soon as
this information was known, Entity B "pre-sent" the message to Entity C. At the synchronization
point, Entity C has an unprocessed message with time stamp T3, so it calculates its window bid as
T3 + ∆Ta.

68

Figure A.8: Non-interruptible activities.

Figure A.9 documents interruptible activities. The first drawing is initial state. All entities
are synchronized at time T1. Entity A has an unprocessed message that is to take place at time
T1. The minimum window bid is T1 + ∆Ta.

The second drawing shows state after processing each entity up to the window edge T1 +
∆Ta. During this window, Entity A processed its message at time T1, learning that the activity is
to last until T2 and that at that time (T2), a message should be received by Entity B. Since the
activity is interruptible, Entity A cannot be certain that the message to Entity B should really be
sent, so it cannot "pre-send" the message yet. Based on the scheduled activity time, Entity A bids
a window time of T2. The minimum window bid is T2.

The third drawing shows state after processing each entity up to the window edge T2.
During this window, at time T2 − ∆Tc, Entity A was committed to finishing its activity (could no
longer be interrupted). At that time, Entity A could safely "pre-send" its message to Entity B with
time stamp T2. At the synchronization point, Entity B has an unprocessed message with time
stamp T2, so it calculates its window bid as T2 + ∆Ta. The minimum window bid is T2 + ∆Ta.

69

Figure A.9: Interruptible Activities.

70

The fourth drawing shows state after processing each entity up to the window edge T2 +
∆Ta. During this window, Entity B processed its message at time T2, learning that the activity is
to last until T3 and that at that time (T3), a message should be received by Entity C. Since the
activity is interruptible, Entity B cannot be certain that the message to Entity C should really be
sent, so it cannot "pre-send" the message yet. Based on the scheduled activity time, Entity B bids
a window time of T3. The minimum window bid is T3.

The final drawing shows state after processing each entity up to the window edge T3.
During this window, at time T3 − ∆Tc, Entity B was committed to finishing its activity (could no
longer be interrupted). At that time, Entity B could safely "pre-send" its message to Entity C with
time stamp T3. At the synchronization point, Entity C has an unprocessed message with time
stamp T3, so it calculates its window bid as T3 + ∆Ta.

It should be noted that after the initial state, interruptible activities required two
synchronization windows per message sent, while non-interruptible activities required only one
synchronization window per message.

71

APPENDIX B: PREEMPTIVE MIN-REDUCTION ALGORITHM PROOF

In this appendix we prove that if we use the preemptive min-reduction algorithm to find the end of
a BTB window on the parallel communication architecture, the execution time is no more than
2mlogP larger than the time needed if communication is instantaneous. The result follows from
an analysis of how values propagate through the communication tree used to implement the min-
reduction. In particular, we look at the effects of communicating the value that ultimately
becomes the global event horizon.

For simplicity of exposition we take P to be a power-of-two. When a processor enters a
min-reduction, it synchronizes pairwise with a sequence of log P processors. At each
synchronization it sends a working minimum (initially its own value) to its partner, and does not
proceed until receiving its partner's working minimum. Both processors keep the minimum of
these two values as the working minimum, and proceed to the next stage. A processor's partner
in the first stage is obtained by inverting bit 0 (the least significant bit) of the processor's id; its
partner in the second stage is obtained by inverting bit 1, and so on.

Figure B.1: Broadcast tree distributing the global event horizon when the critical
transition occurs at processor 0, for P = 8.

Consider any given window, and without loss of generality, assume that processor 0
generates its critical transition. We can construct a tree illustrating how the global minimum
defined by processor 0 spreads out through the processors stage-by-stage, illustrated in Figure
B.1 for the case of P = 8. We see that every processor can be thought of as being "attached" to
this tree at some stage, by receipt of the minimum value from its parent in the tree.

We assume that at the point a processor is first attached to the broadcast tree, it either
stops because of the message sent by its parent, or continues until its time-of-next-event is as
large as the value sent by that parent. In reality the child may have stopped earlier; the time
required to complete the reduction cannot be lessened by assuming that the parent must explicitly
wait for the child to send a synchronization message in response to the parent sent message.
Under this assumption we construct a new graph that reflects message dependencies in the
construction of the broadcast tree. This graph uses an ordinary node to represent a processor that

72

is first attached to the tree; later participation by an attached processor is depicted as a double-
circle. Nodes are labeled by the processors they represent, arcs depict message dependencies.
The graph corresponding to a critical transition at processor 0, for P = 8, is shown in Figure B.2.

Figure B.2: Worst-case communication dependency graph for reduction-tree when the critical
transition occurs at processor 0, for P = 8.

The time to complete the reduction is given as the longest path from source node to any
leaf, using a specialized path measure. Every processor has exactly one ordinary node in the
graph, which we weight by the processor's stopping time in the ideal case (i.e., the stopping time
given by the analytic model). Edges are weighted by the communication delay between source
and target processors, i.e., either 0 or m depending on whether the processors reside in the same
machine. The length of the path from root "through" a specified node is defined recursively. The
length of the path through the root is the weight given to the root node. The length of the path
through a double-circle node is the length of the path through its parent, plus the weight on the
edge between them. The length of the path through an ordinary node is the maximum of (i) its
node weight, and (ii) the length of the path through its parent, plus the weight of the edge
between them. We claim that the length of the path through a node is an upper bound on the time
at which the synchronization represented by that node. We prove this by induction on the tree
structure. The base case is satisfied: the root node represents the processor defining the critical
transition; it cannot be stopped by receipt of any synchronization message, because its local event
horizon is least. Its stopping time is the same with communication costs as it is without. For the
induction hypothesis we presume that the assertion holds true for all nodes in a subtree that
includes the root. Choose a node d that is not in the subtree, but whose parent is. By the
induction hypothesis, the arrival time of the message from the parent to d is bounded from above

73

by the length of the path through its parent plus the communication cost. If the node is a double-
circle node, this message arrival frees the processor to engage in synchronization at the next
stage, and so the path length through d is indeed an upper bound on the time when the
synchronization represented by the node is completed. If d is an ordinary node, the arrival of the
parent's message at time t may stop the processor d represents; if so it must be at a time at least as
large as the weight given to the node, which is to say that if the node weight is less than t then the
time at which the node sends its synchronization message to its parent is no greater than t, and the
path length through d is exactly t. If d's node weight is larger than t, then in the system with
communication delays, the associated processor will stop at the time given in its node weight, and
not before. In this case the appropriate length of path through d is just the node weight.
Consideration of these two cases shows that the path length through d is an upper bound on the
completion time of the synchronization represented by d, completing the induction.

The longest possible path from source to any leaf is obtained when the source node is
weighted with the largest stopping time among all processors, i.e., the overall window termination
time in the ideal case. Then, if every communication edge from root to leaf was weighted by m,
the path length is the ideal window termination time, plus 2m logP.

74

APPENDIX C: COMPLEXITY OF SOLVING MODEL BEHAVIOR EQUATIONS

In this section we sketch the computational complexity of solving the various equations describing
our model's behavior. The equations may be solved numerically if we discretize the state-space,
and apply discrete summations in place of integrals. The state-space is effectively finite, as we do
not need to consider any states that represent time-stamps beyond the end of the simulation time.
As a first approximation we replace the two-dimensional continuous state-space of each step with
an N × N grid of discrete points, equispaced, and consider the computational complexity of
solving the equations on that set of spaces.

Equations (1) and (2) are essentially convolutions in one variable. The direct approach
entails O(N) operations for each discretized state (s, r) (note that the inner integral in the first
term of (2) may be pre-computed once and used for the solution of every state whose receive-
time component is r). There being O(N2) states, the complexity of computing all state values at
one step is O(N3). However, convolutions can be computed more efficiently using Fast Fourier
Transforms. Some trickery is needed to express the convolution integrals "classically" as covering
− ∞ to ∞ , this is accomplished recognizing that the time-increment and receive-time increment
density functions are zero with negative arguments. In this way, given fixed r, the O(N) values of
di

(k)(s, r) for all s are computed in O(NlogN) time. This lowers the per-step computational
complexity to O(N2 logN).

Figure C.1: Area of domain integrated to obtain Lj(r’), and the difference
between Lj(r’ + δ) and Lj(r’)

The rest of the model involves conditioning on r', which means that for each variable O(N)
different values will need to be computed, one for each distinct discretized value of r'. At first
glance it would seem that some values, (i.e. Lj(r')) require O(N2) time for each value of r', because
of the double integration. However, this is not the case, because the value of a variable for one
value of r' is computable with only O(N) work from the value of the variable with the next closest
value of r'. This is most easily seen using a diagram; consider Figure C.1. The shaded area
illustrates the region of state-space over which dj

(k) is integrated to compute Lj(r'), for some value
of r'. The single vertical line at the left edge of this space illustrates the region of the state-space
that is not included in the value of Lj(r' + δ); we obtain Lj(r' + δ) by subtracting the contribution of

75

this line from Lj(r'); computing the line's contribution costs only O(N) time. The same sort of
method works computing the numerator and denominator of γj

(k)(r') (equation (4)), and for
computing the areas illustrated in Figure C.1. The cost of computing all r' dependent values at a
given step for all processors is thus O(PN2), a cost that is dominated by the initial cost of
computing the unconditional state probabilities.

The number of steps we solve for will depend on the behavior of the underlying
distributions. We will need to solve for as many steps as it takes before the probability of
reaching the step is sufficiently small to ignore. Let K be this number of steps; the complexity
results are more cleanly stated if we assume K ≥ N.

The costs identified so far show that if the state occupancy probability functions fj
(k) are

known, the cost of computing the distribution of G(i, n, r) is O(PNK). Considering the cost of
computing the distributions of variables Τj (equations (5)) and (6)), observe that for y > 0,
Pr{Tj(n, r) = y} = Pr{Tj(n + 1, r) = y − 1}. Coupled with our previously noted ability to compute
Sj,* type distributions incrementally, this symmetry can be exploited to streamline the computation
of the all Tj distributions, obtaining them all in O(PNK) time. The symmetry can be exploited
again when computing the distribution of the max term in W(i, n, r') (equation (8)); O(PNK) time
again is needed to compute distributions of all variables W(i, n, r'). The distribution of W
(equation (8)) is then computed directly in O(PNK) time.

Computation of the distributions for Lj(r') and Xj(i, n, r') uses the same ideas.
Computation of Ej(i, n, r') type distributions involves rescaling O(K) values for every value of n.
The complexity of computing distributions for all variables Ej(i, n, r') is thus O(PNK2). The
expectations U(i, n, r') (equation (10)) are all computed in time O(PNK), as is the final
expectation U (equation (11)).

The cost of computing all the state values is O(PKN2 log N), whereas the dominant cost of
computing performance measures is O(PNK2). This is in some sense almost as good as one could
expect given that state point has four coordinates: processor, the two state components, and time;
the cost will be at least linear in the product of the extent of those dimensions. Our complexity
figures are close to that optimum.

76

DISTRIBUTION:

David M. Nicol
Department of Computer Science
6211 Sudikoff Laboratory
Dartmouth College
Hanover, New Hampshire 03755-3510

1 MS 9001 T. O. Hunter, 8000
Attn: J. B. Wright, 2200

J. F. Ney (A), 5200
L. A. West, 8200
W. J. McLean, 8300
R. C. Wayne, 8400
P. N. Smith, 8500
P. E. Brewer, 8600
T. M. Dyer, 8700
L. A. Hiles, 8800
D. L. Crawford, 8900

1 MS 0149 C. E. Meyers, 4000
1 MS 9004 M. E. John, 8100
1 MS 9201 L. D. Brandt, 8112
1 MS 9201 P. K. Falcone, 8114
1 MS 9201 M. E. Goldsby, 8114

10 MS 9201 M. M. Johnson, 8114
1 MS 9201 A. S. Yoshimura, 8112
1 MS 9214 L. M. Napolitano, 8130

3 MS 9018 Central Technical Files, 8940-2
4 MS 0899 Technical Library, 4916
1 MS 9021 Technical Communications Department, 8815/Technical

Library, MS 0899, 4916
2 MS 9021 Technical Communications Department, 8815, for DOE/OSTI

	ABSTRACT
	ACKNOWLEDGEMENT
	CONTENTS
	1 INTRODUCTION
	1.1 WHY PARALLEL SIMULATION

	2 IDES PERFORMANCE MODELING
	2.1 THE PROCESSOR EVENT HORIZON
	2.2 A MODEL OF A PARALLEL SIMULATION
	2.3 EXPERIMENTS

	3 THE IDES SYSTEM
	3.1 SYSTEM DESIGN GOALS
	3.2 SYSTEM CONSTRAINTS
	3.3 SYNCHRONIZATION
	3.4 IDES IMPLEMENTATION

	4 BATCH SIMULATION SYSTEM
	4.1 CORBA BATCH SYSTEM
	4.2 DISTRIBUTED QUEUING SYSTEM

	5 CONCLUSIONS
	REFERENCES
	BIBLIOGRAPHY
	APPENDIX A: PDES SYSTEM DESIGN ISSUES
	A.1 AN OBJECT ORIENTED MODEL FOR PARALLEL PROGRAMMING
	A.2 WAYS OF IMPLEMENTING CONCURRENCY
	A.3 AN INTERPRETATION OF CHANDY-SHERMAN SPACE-TIME SIMULATION
	A.4 PARALLEL CONSERVATIVE SIMULATION TIMING DIAGRAMS

	APPENDIX B: PREEMPTIVE MIN-REDUCTION ALGORITHM PROOF
	APPENDIX C: COMPLEXITY OF SOLVING MODEL BEHAVIOR EQUATIONS
	DISTRIBUTION

